Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vitamin alcohol

Ester forms are found in the commonly occurring sterols and vitamin alcohols, such as vitamin A, the D vitamins, and vitamin E, as well as in carotenoids (flowers and green algae) and terpenoids (rose petals). Various other esters have been reported in different bacteria and yeasts where they may occur as glycoside and amino acid derivatives. Eor more details, see Reference 2. [Pg.941]

Likewise, esters are found for vitamin alcohols such as vitamin A, the vitamin Ds and vitamin E. Examples are as follows ... [Pg.38]

Baines, M., Bligh, J.G., and Madden, J.S., 1988. Tissue thiamin levels of hospitalised alcoholics before and after oral or parenteral vitamins. Alcohol and Alcoholism. 23 49-52. [Pg.276]

Thiamin deficiency is not uncommon in alcoholics apart from a low intake of the vitamin, alcohol inhibits the transport of thiamin from intestinal mucosal cells into the bloodstream. There is little storage of thiamin in the body, and deficiency can develop within a few weeks (see Problem 5.2). [Pg.143]

Chloroacetate esters are usually made by removing water from a mixture of chloroacetic acid and the corresponding alcohol. Reaction of alcohol with chloroacetyl chloride is an anhydrous process which Hberates HCl. Chloroacetic acid will react with olefins in the presence of a catalyst to yield chloroacetate esters. Dichloroacetic and trichloroacetic acid esters are also known. These esters are usehil in synthesis. They are more reactive than the parent acids. Ethyl chloroacetate can be converted to sodium fluoroacetate by reaction with potassium fluoride (see Fluorine compounds, organic). Both methyl and ethyl chloroacetate are used as agricultural and pharmaceutical intermediates, specialty solvents, flavors, and fragrances. Methyl chloroacetate and P ionone undergo a Dar2ens reaction to form an intermediate in the synthesis of Vitamin A. Reaction of methyl chloroacetate with ammonia produces chloroacetamide [79-07-2] C2H ClNO (53). [Pg.90]

Cosmetics and Pharmaceuticals. The main use of hexadecanol (cetyl alcohol) is in cosmetics (qv) and pharmaceuticals (qv), where it and octadecanol (stearyl alcohol) are used extensively as emoUient additives and as bases for creams, Hpsticks, ointments, and suppositories. Octadecenol (oleyl alcohol) is also widely used (47), as are the nonlinear alcohols. The compatibiHty of heavy cut alcohols and other cosmetic materials or active dmg agents, their mildness, skin feel, and low toxicity have made them the preferred materials for these appHcations. Higher alcohols and their derivatives are used in conditioning shampoos, in other personal care products, and in ingested materials such as vitamins (qv) and sustained release tablets (see Controlled RELEASE technology). [Pg.449]

Ethanol, acetaldehyde, acetic acid, acetone, glycerol, n - butanol, n - butyric acid, amyl alcohols, oxalic acid, lactic acid, citric acid, amino acids, antibiotics, vitamins... [Pg.27]

A small amount of acetylene is used in condensations with carbonyl compounds other than formaldehyde. The principal uses for the resulting acetylenic alcohols are as intermediates in the synthesis of vitamins (qv). [Pg.393]

Lithium acetyhde also can be prepared directly in hquid ammonia from lithium metal or lithium amide and acetylene (134). In this form, the compound has been used in the preparation of -carotene and vitamin A (135), ethchlorvynol (136), and (7j--3-hexen-l-ol (leaf alcohol) (137). More recent synthetic processes involve preparing the lithium acetyhde in situ. Thus lithium diisopropylamide, prepared from //-butyUithium and the amine in THF at 0°C, is added to an acetylene-saturated solution of a ketosteroid to directly produce an ethynylated steroid (138). [Pg.229]

The 1995 Canadian and United States sugar alcohol (polyol) production is shown in Table 2. The market share of each is also given. Liquids comprise 48% crystalline product comprises 39% and mannitol comprises 13% of the polyol market. An estimate of total U.S. sorbitol capacity for 1995 on a 70% solution basis was 498,000 t. ADM, Decatur, lU., produced 68,200 t Ethichem, Easton, Pa., 13,600 t Lon2a, Mapleton, lU., 45,400 t Roquette America, Gurnee, lU., 68,200 t and SPI Polyols, New Castle, Del., 75,000 t (204). Hoffman-LaRoche, which produces sorbitol for captive usage in the manufacture of Vitamin C (see Vitamins), produced about 27,300 t in 1995. [Pg.52]

Salts and Derivatives. Generally the vitamers are high melting crystalline soHds that are very soluble in water and insoluble in most other solvents. Properties of the common forms are Hsted in Table 1. The only commercially important form of vitamin B is pytidoxine hydrochloride (7). This odorless crystalline soHd is composed of colorless platelets melting at 204—206°C (with decomposition). In bulk, it appears white and has a density of - 0.4 kg/L. It is very soluble in water (ca 0.22 kg/L at 20°C), soluble in propylene glycol, slightly soluble in acetone and alcohol (ca 0.014 kg/L), and insoluble in most lipophilic solvents. A 10% water solution shows a pH of 3.2. Both the hydrochloride and corresponding free base sublime without decomposition (16). [Pg.68]

Vitamin D2 reacted with maleic anhydride to give a mono Diels-Alder adduct, which hydrolyzed to yield a dicarboxyhc acid. Acetylation of the alcohols, esterification of carboxyHc acids, and hydrogenation gave a compound that, when ozonized, gave a saturated ketone, This molecule... [Pg.125]

The solvent is then evaporated, and the unconverted sterol is recovered by precipitation from an appropriate solvent, eg, alcohol. The recovered sterol is reused in subsequent irradiations. The solvent is then evaporated to yield vitamin D resin. The resin is a pale yeUow-to-amber oil that flows freely when hot and becomes a brittie glass when cold the activity of commercial resin is 20 30 x 10 lU/g. The resin is formulated without further purification for use in animal feeds. Vitamin D can be crystallized to give the USP product from a mixture of hydrocarbon solvent and ahphatic nitrile, eg, benzene and acetonitrile, or from methyl formate (100,101). Chemical complexation has also been used for purification. [Pg.134]

Clinical stresses which interfere with vitamin metabohsm, can result in calcium deficiency leading to osteomalacia and osteoporosis (secondary vitamin D deficiency). These stresses include intestinal malabsorption (lack of bile salts) stomach bypass surgery obstmctive jaundice alcoholism Hver or kidney failure decreasing hydroxylation of vitamin to active forms inborn error of metabohsm and use of anticonverdiants that may lead to increased requirement. [Pg.137]

The isophytol side chain can be synthesized from pseudoionone (Fig. 5) using chemistry similar to that used in the vitamin A synthesis (9). Hydrogenation of pseudoionone (20) yields hexahydropseudoionone (21) which can be reacted with a metal acetyUde to give the acetylenic alcohol (22). Rearrangement of the adduct of (22) with isopropenyknethyl ether yields, initially, the aHenic ketone (23) which is further transformed to the C g-ketone (24). After reduction of (24), the saturated ketone (25) is treated with a second mole of metal acetyUde. The acetylenic alcohol (26) formed is then partially hydrogenated to give isophytol (14). [Pg.147]

Vitamin is iasoluble ia water and is soluble ia 70% alcohol, cbloroform, petroleum ether, ben2ene, and hexane. Vitamin is stable ia air but should be protected from light. Although unstable ia alkaU, the vitamin is stable ia acidic medium. Its facile decomposition ia basic solution forms the basis of the Dam-Karrer color test. [Pg.152]

The elemental and vitamin compositions of some representative yeasts are Hsted in Table 1. The principal carbon and energy sources for yeasts are carbohydrates (usually sugars), alcohols, and organic acids, as weU as a few other specific hydrocarbons. Nitrogen is usually suppHed as ammonia, urea, amino acids or oligopeptides. The main essential mineral elements are phosphoms (suppHed as phosphoric acid), and potassium, with smaller amounts of magnesium and trace amounts of copper, zinc, and iron. These requirements are characteristic of all yeasts. The vitamin requirements, however, differ among species. Eor laboratory and many industrial cultures, a commercial yeast extract contains all the required nutrients (see also Mineral nutrients). [Pg.387]

By-Products. After the removal of alcohol, the fermentation residues are processed to produce distiUers grains. These residues consist of proteins, fats, minerals, vitamins, and fiber that are concentrated threefold by removal of the starch. DistiUers grains are usually divided into one of four groups including distiUers dry grains (DDG), distiUers dry solubles (DDS), distiUers dry grains with solubles (DDG/S), and condensed distiUers solubles (CDS). [Pg.85]

Low-molecular-weight products, generally secondary metabolites such as alcohols, carboxyhc and an iino acids, antibiotics, and vitamins, can be recovered using many of the standard operations such as liquid-hquid extraction, adsorption and ion-exchange, described elsewhere in this handbook. Proteins require special attention, however, as they are sufficiently more complex, their function depending on the integrity of a delicate three-dimensional tertiaiy structure that can be disrupted if the protein is not handled correctly. For this reason, this section focuses primarily on protein separations. Cell separations, as a necessary part of the downstrean i processing sequence, are also covered. [Pg.2056]

Retinal (vitamin A aldehyde), alcohol) see entries in Chapter 6. [Pg.348]

The first example is the plasma-borne retinol-binding protein, RBP, which is a single polypeptide chain of 182 amino acid residues. This protein is responsible for transporting the lipid alcohol vitamin A (retinol) from its storage site in the liver to the various vitamin-A-dependent tissues. It is a disposable package in the sense that each RBP molecule transports only a single retinol molecule and is then degraded. [Pg.68]

FIGURE 8.18 Dolichol phosphate is an initiation point for the synthesis of carbohydrate polymers in animals. The analogous alcohol in bacterial systems, undecaprenol, also known as bactoprenol, consists of 11 isoprene units. Undecaprenyl phosphate delivers sugars from the cytoplasm for the synthesis of cell wall components such as peptidoglycans, lipopolysaccharides, and glycoproteins. Polyprenyl compounds also serve as the side chains of vitamin K, the ubiquinones, plastoquinones, and tocopherols (such as vitamin E). [Pg.253]

Mg-" Alcohol dehydrogenase Hexokinase 5 -Deoxyadenosylcobalamin (vitamin Big) H atoms and alkyl groups Me thy Im alony 1-CoA mutase... [Pg.430]

Schiffbase, 1147 Scurvy vitamin C and, 772 sec-Butyl group, 84 Second-order reaction, 363 Secondary alcohol, 600 Secondary amine, 917 Secondary carbon, 84 Secondary hydrogen. 85 Secondary structure (protein), 1038-1039... [Pg.1314]


See other pages where Vitamin alcohol is mentioned: [Pg.221]    [Pg.207]    [Pg.221]    [Pg.207]    [Pg.105]    [Pg.344]    [Pg.728]    [Pg.359]    [Pg.368]    [Pg.79]    [Pg.114]    [Pg.151]    [Pg.35]    [Pg.385]    [Pg.392]    [Pg.285]    [Pg.408]    [Pg.97]    [Pg.122]    [Pg.391]    [Pg.13]    [Pg.458]    [Pg.574]    [Pg.728]    [Pg.80]    [Pg.253]    [Pg.773]    [Pg.1293]    [Pg.352]   
See also in sourсe #XX -- [ Pg.62 ]

See also in sourсe #XX -- [ Pg.62 ]

See also in sourсe #XX -- [ Pg.62 ]




SEARCH



Alcohol dehydrogenase, vitamin

Alcohol vitamin A and

Alcohol vitamin deficiencies

Alcohol vitamin interactions

Alcoholics and vitamin

Alcoholism Vitamin

Alcoholism Vitamin

All-trans-vitamin A alcohol

Liver alcohol dehydrogenase vitamin

Vitamin A alcohol

Vitamin alcohol, beta-carotene, interaction

© 2024 chempedia.info