Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methyl alcohol, aqueous solutions

Typical organic solvents for diffusion adhesives are methylene chloride (for PC, ABS, PMMA), xylene, cyclohexanone (ABS), tetrahydrofurane (THF adhesive for PVC-U, ABS, SAN, SB), ethyl and butyl acetate (ABS), alcoholic-aqueous solution of resorcin and phenol (for PA 6, PA 6.6 and PA 12), DMF, higher primary alcohols, A-methyl-pyrrolidone (for PA 11), methylethyl ketone (for CA, CAB, CP, CN, ABS, SAN, SB, PMMA), xylene, toluene for PS. It is remarkable that so much of these solvents is used despite the known high hazard potential. [Pg.246]

Those reactions only happen in the alcohol aqueous solution of monohydric alcohol nitrates. It should be noted that methyl nitrate cannot be reacted in the first path, while tert-butyl nitrate cannot be hydrolyzed in the third path. The product amount of methyl nitrate hydrolysis through the third path is very small. Only 4 % ethyl nitrate is hydrolyzed in the first and second paths. The other nitrate esters would be completely hydrolyzed in the first path. The ratio of the reaction velocity for three reaction paths is 70 7 1. [Pg.188]

Methyl iodide, ethyl bromide and ethyl iodide also evolve small amounts of ethylene when treated as above. If this is suspected, a small quantity of the substance should be heated with alcoholic NaOH solution in a small flask, fitted with a knee delivery-tube. Pass the gas evolved through a very dilute solution of KMn04 which has been made alkaline with aqueous NagCOj solution. If ethylene has been formed, a brown precipitate of MnOj will be produced (a transient green colour may appear). [Pg.391]

Formaldehyde is a gas, b.p. — 21°, and cannot obviously be stored as such moreover, it polymerises readily in the liquid and the gaseous state. The commercial preparation, formalin, is an aqueous solution containing 35-40 per cent, of formaldehyde and some methyl alcohol. The preparation of a solution of formaldehyde may be demonstrated by the following experiment. [Pg.325]

Prepare a saturated solution of sodium bisulphite at the laboratory temperature from 40 g. of finely powdered sodium bisulphite about 70 ml. of water are required. Measure the volume of the resulting solution and treat it with 70 per cent, of its volume of rectified spirit (or methylated spirit) add sufficient water (about 45 ml.) to just dissolve the precipitate which separates. Introduce 20 g. of commercial cycZohexanone into the aqueous-alcoholic bisulphite solution with stirring and allow the mixture to stand for 30 minutes stir or shake occasionally. FUter off the crystalline bisulphite compound at the pump, and wash it with a little methylated spirit. [Pg.342]

To obtain a maximum yield of the acid it is necessary to hydrolyse the by-product, iaoamyl iaovalerate this is most economically effected with methyl alcoholic sodium hydroxide. Place a mixture of 20 g. of sodium hydroxide pellets, 25 ml. of water and 225 ml. of methyl alcohol in a 500 ml. round-bottomed flask fitted with a reflux (double surface) condenser, warm until the sodium hydroxide dissolves, add the ester layer and reflux the mixture for a period of 15 minutes. Rearrange the flask for distillation (Fig. II, 13, 3) and distil off the methyl alcohol until the residue becomes pasty. Then add about 200 ml. of water and continue the distfllation until the temperature reaches 98-100°. Pour the residue in the flask, consisting of an aqueous solution of sodium iaovalerate, into a 600 ml. beaker and add sufficient water to dissolve any solid which separates. Add slowly, with stirring, a solution of 15 ml. of concentrated sulphuric acid in 50 ml. of water, and extract the hberated acid with 25 ml. of carbon tetrachloride. Combine this extract with extract (A), dry with a httle anhydrous magnesium or calcium sulphate, and distil off the carbon tetrachloride (Fig. II, 13, 4 150 ml. distiUing or Claisen flask), and then distil the residue. Collect the wovaleric acid 172-176°. The yield is 56 g. [Pg.356]

In aqueous solution at 100° the change is reversible and equilibrium is reached when 95 per cent, of the ammonium cyanate has changed into urea. Urea is less soluble in water than is ammonium sulphate, hence if the solution is evaporated, urea commences to separate, the equilibrium is disturbed, more ammonium cyanate is converted into urea to maintain the equilibrium and evfflitually the change into urea becomes almost complete. The urea is isolated from the residue by extraction with boiling methyl or ethyl alcohol. The mechanism of the reaction which is generally accepted involves the dissociation of the ammonium cyanate into ammonia and cyanic acid, and the addition of ammonia to the latter ... [Pg.441]

In contrast to the hydrolysis of prochiral esters performed in aqueous solutions, the enzymatic acylation of prochiral diols is usually carried out in an inert organic solvent such as hexane, ether, toluene, or ethyl acetate. In order to increase the reaction rate and the degree of conversion, activated esters such as vinyl carboxylates are often used as acylating agents. The vinyl alcohol formed as a result of transesterification tautomerizes to acetaldehyde, making the reaction practically irreversible. The presence of a bulky substituent in the 2-position helps the enzyme to discriminate between enantiotopic faces as a result the enzymatic acylation of prochiral 2-benzoxy-l,3-propanediol (34) proceeds with excellent selectivity (ee > 96%) (49). In the case of the 2-methyl substituted diol (33) the selectivity is only moderate (50). [Pg.336]

TABLE 2-26 Partial Pressures of H O and CH3OH over Aqueous Solutions of Methyl Alcohol ... [Pg.133]

The most common impurities are the corresponding acid and hydroxy compound (i.e. alcohol or phenol), and water. A liquid ester from a carboxylic acid is washed with 2N sodium carbonate or sodium hydroxide to remove acid material, then shaken with calcium chloride to remove ethyl or methyl alcohols (if it is a methyl or ethyl ester). It is dried with potassium carbonate or magnesium sulfate, and distilled. Fractional distillation then removes residual traces of hydroxy compounds. This method does not apply to esters of inorganic acids (e.g. dimethyl sulfate) which are more readily hydrolysed in aqueous solution when heat is generated in the neutralisation of the excess acid. In such cases, several fractional distillations, preferably under vacuum, are usually sufficient. [Pg.64]

A s/cr.s possess a fruity smell and usually distil without decomposition. Boil with refltiK for 5 minutes on the water-btith a few c.c. of the licpiid with 3 to 4 volumes of a ten pei cent, solution of ctLListic potash in methyl alcohol and pour into water. Notice if the liquid dissolves and has lost the odour of the ester. An ester will be completely hydrolysed, and if the alcohol is soluble in water a clear solution will be obtained. If the alcohol is vol.atile and the solution neiitialised w ith sulphuric acid. and evaporated on the water-bath, the alkali salt of the organic acid mixed with pottissium sulphate will be left and the acid may be investigated as desciibed under 1. If it is required to. ascertain the nature of the alcohol in the ester, hydrolysis must fig effected with a strong aqueous solution of caustic potash... [Pg.333]

In general, the A -methyl derivative of a given compound absorbs at longer wavelengths than the O-methyl derivative. The intensity of a band which appears in aqueous solutions beyond the maximum absorption in alcohol and which is due to the absorption of the betainic species alone, is a measure of the tautomeric equilibrium. The pA"a value of the 2-methyl-hydroxyisoquinolinium chlorides increase in the order 4-hydroxy (4.93), 8-hydroxy (5.81), 6-hydroxy (6.02), 5-hydroxy (6.90), and 7-hydroxy (7.09 in water at 25 °C, respectively) (57JCS5010). Thus, 2-methyl-4-hydroxyisoqui-nolinium chloride is the strongest acid. The UV spectra of 2-methyl-isoquinolinium-5-olate (34) and 2-methyl-isoquinolinium-8-olate (39) were also presented (61BCJ533) and the formation of a quinoid structure of 2-methyl-isoquinolinium-6-olate (38) can also be detected by means of UV-spectroscopy. [Pg.86]

D) 4 -[N-Ethyi-1 "-Methyl-2 -(4" -Methoxyphenyl)Ethylamino]Butyi-3,4-Dimethoxybenzoate Hydrochloride 10.3 g of 4 -iodobutyl-3,4-dimethoxybenzoate and 11.0 g of N-ethyl-p-methoxyphenylisopropylamine (obtained by catalytic reduction of an alcoholic solution of an excess quantity (60%) of p-methoxy-phenyl-acetone, to which was added a 33% (weight-for-weight) aqueous solution of ethylamine, with Pt as a catalyst), were boiled in 200 ml of methyl ethyl ketone for 20 hours, cooled and the iodine ion was determined the reaction was found to be complete. Then the methyl ethyl ketone was evaporated in vacuo and the residue was dissolved in 300 ml of water and 30 ml of ether the layers were separated and the water layer was extracted twice more with 20 ml portions of ether. [Pg.901]

Preparation of 1-Methyl-5-Allyl-5-( 1-Methyl-2-Pentynyl) Barbituric Acid A solution of 23.8 g of sodium in 360 ml of absolute alcohol was prepared and thereto were added 38.3 g of methyl urea and 96.8 g of diethyl allyl (1-methyl-2-pentynyl) malonate. The mixture was refluxed for about 20 hours, cooled, and the ethanol was removed by distillation in vacuo. The residue was dissolved in about 300 ml of water and the aqueous solution was washed with ether, and the washings were discarded. The aqueous solution was then acidified with acetic acid, and extracted with three 150 ml of portions of ether. [Pg.983]

Propyl-methyl-carbinyl allyl barbituric acid (also called allyl 1-methyl-butyl barbituric acid) may be prepared as follows 1 mol of propyl-methyl-carbinyl barbituric acid is dissolved in a suitable vessel In a 10 to 35% aqueous solution of 1 mol of potassium hydroxide. To this are added somewhat in excess of 1 mol of allyl bromide, and alcohol equal to about 10% of the total volume of the solution. The vessel Is agitated for 50 to 75 hours. At the end of this time, the solution, which may still exhibit two layers, is concentrated to about one-half its volume to remove the excess allyl bromide and the alcohol. On cooling, an oily layer, which is propyl-methyl-carbinyl allyl barbituric acid, separates out as a sticky viscous mass. It is dried, washed with petroleum ether, and dissolved in the minimum amount of benzene. Any unreacted propyl-methyl-carbinyl barbituric acid, which does not dissolve, is filtered off. The addition of petroleum ether to the clear filtrate causes the propyl-methyl-carbinyl allyl barbituric acid to precipitate as an oily mass. [Pg.1370]

It will be seen that the correlation that was found in aqueous solution is now extended to solutes in methyl alcohol. The large increment in the 1 W. M. Latimer and C. M. Slansky, J. Am. Chem. Soc., 62, 2019 (1940). [Pg.183]

Nishimura and coworkers57-59 studied the y-radiolysis of aqueous solutions of sulfoxide amino acids. Sulfoxide amino acids are the precursors of the flavors of onions (S-propyl-L-cysteine sulfoxide, S-methyl-L-cysteine sulfoxide and S-(l-propenyl)-L-cysteine sulfoxide) and garlic (S-allyl-L-cysteine sulfoxide). In studies on sprout inhibition of onion by /-irradiation it was found that the characteristic flavor of onions became milder. In the y-radiolysis of an aqueous solution of S-propyl-L-cysteine sulfoxide (PCSO)57,58 they identified as the main products alanine, cysteic acid, dipropyl disulfide and dipropyl sulfide. In the radiolysis of S-allyl-L-cysteine sulfoxide (ACSO) they found that the main products are S-allyl-L-cysteine, cysteic acid, cystine, allyl alcohol, propyl allyl sulfide and diallyl sulfide. The mechanisms of formation of the products were partly elucidated by the study of the radiolysis in the presence of N20 and Br- as eaq - and OH radicals scavengers, respectively. [Pg.909]

Capillary tube isotachophoresis using a potential gradient detector is another technique that has been applied to the analysis of alcohol sulfates, such as sodium and lithium alcohol sulfates [303]. The leading electrolyte solution is a mixture of methyl cyanate and aqueous histidine buffer containing calcium chloride. The terminating electrolyte solution is an aqueous solution of sodium octanoate. [Pg.285]

The 9,10-phosphonostearic acid in form of its sodium salt shows a good thermal stability and was efficient as an inhibitor in rust protection. The diethyl-phosphonoacetoxystearic acid methyl ester is used as additive in high-pressure lubricants. Rust protection properties are also shown by 9,10-phosphonostearyl alcohol [157]. Trisodium 9,10-phosphonostearate possesses the best surface activity in an 0.2% aqueous solution showing 33 mN/m at 30°C and a pH value of 10.5 [156]. By the addition of dialkyl phosphite to a,p-unsaturated ketones the y-oxophosphonic acids are available [159]. Addition of dialkyl phosphite to y-ketoacids leads to a-hydroxy-y-carboxyphosphonates see Eq. (86) ... [Pg.584]

In recent years further concepts have been developed for the construction of polymer-based diodes, requiring either two conjugated polymers (PA and poly(A-methyl-pyrrole) 2 > or poly(A-methylpyrrole in a p-type silicon wafer solid-state field-effect transistor By modifying the transistor switching, these electronic devices can also be employed as pH-sensitive chemical sensors or as hydrogen or oxygen sensors 221) in aqueous solutions. Recently a PPy alcohol sensor has also been reported 222). [Pg.34]


See other pages where Methyl alcohol, aqueous solutions is mentioned: [Pg.142]    [Pg.653]    [Pg.1422]    [Pg.361]    [Pg.482]    [Pg.712]    [Pg.953]    [Pg.1005]    [Pg.219]    [Pg.1188]    [Pg.85]    [Pg.489]    [Pg.70]    [Pg.58]    [Pg.147]    [Pg.219]    [Pg.229]    [Pg.242]    [Pg.374]    [Pg.377]    [Pg.723]    [Pg.160]    [Pg.85]    [Pg.439]    [Pg.530]    [Pg.67]    [Pg.40]    [Pg.75]    [Pg.187]    [Pg.68]    [Pg.903]   
See also in sourсe #XX -- [ Pg.37 ]




SEARCH



Alcohol Methylic

Alcohol solution

Alcoholic solutions

Alcohols methylation

Methyl alcohol, aqueous

Methyl alcohol—

© 2024 chempedia.info