Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adenylyl adenosine

The first question asked and answered was what is the conformation of a. dinucleoside phosphate Some possible stacked conformations are shown in Figure 3. Of course, before measurements were made it was not clear that the bases were stacked at all. However, the first ORD measurements made on adenylyl adenosine (ApA) immediately showed that the bases were stacked and that they began a right handed helix [14]. Our most recent calculation (Figure 4) shows that the conformations of ApA and deoxyadenylyl deoxyadeno-sine (dApdA) are similar to those found in their corresponding double stranded helical structures. That is, ApA has a conformation like one strand of a double stranded RNA helix, while dApdA has a conformation like a double stranded B-form DNA helix [15]. [Pg.6]

FIGURE 9.14 Effects of adenosine receptor agonist 2-chloro-adenosine on vascular perfusion pressure of isolated perfused rat kidneys. Minor effects seen in untreated kidneys (filled circles) and pronounced vasoconstriction while vasodilatation in kidneys coperfused with subthreshold concentrations of a-adrenoceptor vasoconstrictor methoxamine and vasodilatatory activation of adenylyl cyclase with forskolin (open circles). Redrawn from [49]. [Pg.189]

Probably all adenylyl cyclases are inhibited competitively by substrate analogs, which bind at the site and to the enzyme configuration with which cation-ATP binds (cf Fig. 4). One of the best competitive inhibitors is (3-L-2, 3 -dideoxy adenosine-5 -triphosphate ( 3-L-2, 3 -dd-5 -ATP Table 4) [4], which allowed the identification of the two metal sites within the catalytic active site (cf Fig. 4) [3]. This ligand has also been labeled with 32P in the (3-phosphate and is a useful ligand for reversible, binding displacement assays of adenylyl cyclases [4]. The two inhibitors, 2, 5 -dd-3 -ATP and 3-L-2, 3 -dd-5 -ATP, are comparably potent... [Pg.35]

Adenylyl Cyclases Guanylyl Cyclases Transmembrane Signalling Cyclic Adenosine Monophosphate Cyclic Guanosine Monophosphate Cyclic Nucleotide-gated Channels Phosphodiesterases... [Pg.403]

Acyl-CoA Synthetase Adaptive Immunity Adaptor Proteins Addiction Addison s Disease Additive Interaction Adenosine Adenosine Receptors Adenoviruses Adenylate Cyclase Adenylyl Cyclases ADH ADHD... [Pg.1485]

ATP interacts with sulfate ion (SO ) to form adenosine 5-phosphosulfate (APS) in a reaction mediated by the enzyme ATP sulfate adenylyl transferase. [Pg.43]

Figure 25-8. Control of adipose tissue lipolysis. (TSH, thyroid-stimulating hormone FFA, free fatty acids.) Note the cascade sequence of reactions affording amplification at each step. The lipolytic stimulus is "switched off" by removal of the stimulating hormone the action of lipase phosphatase the inhibition of the lipase and adenylyl cyclase by high concentrations of FFA the inhibition of adenylyl cyclase by adenosine and the removal of cAMP by the action of phosphodiesterase. ACTFI,TSFI, and glucagon may not activate adenylyl cyclase in vivo, since the concentration of each hormone required in vitro is much higher than is found in the circulation. Positive ( ) and negative ( ) regulatory effects are represented by broken lines and substrate flow by solid lines. Figure 25-8. Control of adipose tissue lipolysis. (TSH, thyroid-stimulating hormone FFA, free fatty acids.) Note the cascade sequence of reactions affording amplification at each step. The lipolytic stimulus is "switched off" by removal of the stimulating hormone the action of lipase phosphatase the inhibition of the lipase and adenylyl cyclase by high concentrations of FFA the inhibition of adenylyl cyclase by adenosine and the removal of cAMP by the action of phosphodiesterase. ACTFI,TSFI, and glucagon may not activate adenylyl cyclase in vivo, since the concentration of each hormone required in vitro is much higher than is found in the circulation. Positive ( ) and negative ( ) regulatory effects are represented by broken lines and substrate flow by solid lines.
The RBC contains certain enzymes of nucleotide metabolism (eg, adenosine deaminase, pyrimidine nucleotidase, and adenylyl kinase) deficiencies of these enzymes are involved in some cases of hemolytic anemia. [Pg.612]

The conformations of L-adenylyl-(3 5 )-L-adenosine (28) and L-adenylyl-(2 -> 5 )-L-adenosine (29), as deduced from circular dichroic spectra, are different from the corresponding DD-dinucleotides. < The n.m.r. and u.v. absorption spectra of (28) and (29) are the same as the DD-dimers and their chromatographic and electrophoretic properties appear identical. While (28) and (29) are resistant to enzymic hydrolysis they form complexes with polyU. [Pg.132]

Rossler P., Kroner C.K.J., Lobel D., Breer H., et al. (2000). Cyclic adenosine monophosphate signaling in the rat vomeronasal organ role of an adenylyl cyclase type VI. Chem Senses 25, 313-322. [Pg.242]

C2oH25N10010P -2 C13H12N3+ 04S2- Adenylyl-(3 — 5 )-adenosine phosphate bis(proflavin ADPAPF 43 373... [Pg.419]

C30H37N15O16P2-6 H20 Adenylyl-(3 5 )-adenylyl-(3 — 5 )-adenosine, hexahydrate APAPAD10 37 432... [Pg.421]

Dl-iike receptors activate the Gs transduction pathway, stimulating the production of adenylyl cyclase, which increases the formation of cyclic adenosine monophosphate (cAMP) and ultimately increases the activity of cAMP-dependent protein kinase (PKA). PKA activates DARPP-32 (dopamine and cyclic adenosine 3, 5 -monophosphate-regulated phosphoprotein, 32 kDa) via phosphorylation, permitting phospho-DARPP-32 to then inhibit protein phosphatase-1 (PP-1). The downstream effect of decreased PP-1 activity is an increase in the phosphorylation states of assorted downstream effector proteins regulating neurotransmitter... [Pg.182]

Adenyl cyclase The enzyme (also known as adenylate, or adenylyl cyclase) that catalyses the formation of the second messenger cyclic adenosine-.l A -monophosphate (cAMP) from ATP following the activation of a Gs protein-coupled receptor. [Pg.235]

FIGURE 14-6 Main signaling pathways for histamine receptors. Histamine can couple to a variety of G-protein-linked signal transduction pathways via its four different receptors. The Hj receptor activates the phosphatidylinositol turnover via Gq/11 proteins. The other receptors either positively (H2 receptor) or negatively (H3 and H4 receptor) regulate adenylyl cyclase activity via Gs and GUo protein activation respectively. Several additional signaling pathways have been described, which are not shown. Abbreviations PfP2, phosphatidylinositol 4,5-bisphosphate PIC, phospholipase C AC, adenylyl cyclase ATP, adenosine triphosphate cAMP, cyclic AMP PKC, protein kinase C PICA, protein kinase A. [Pg.259]

The P-site of adenylyl cyclase inhibits cyclic AMP accumulation 308 There are four adenosine receptor subtypes 308 Xanthines block P2 but not P2 receptors 309... [Pg.303]

The P-site of adenylyl cyclase inhibits cyclic AMP accumulation. Since P, and P2 receptors are located on the cell surface, they bind purines or pyrimidines in the extracellular space. There also is an adenosine binding site located intracellularly on the enzyme adenylyl cyclase (see Ch. 21). This is referred to as the P-site of adenylyl cyclase. Binding of adenosine and other purines, notably 3 AMP, 2 deoxy-3 -ATP and 2, 5 -dideoxyadenosine to this site, inhibits adenylyl cyclase activity [8]. The P-site of adenylyl cyclase and other intracellular purine binding sites are not classified as purinergic receptors. [Pg.308]

A1 adenosine receptors are inhibitory in the central nervous system. A receptors were originally characterized on the basis of their ability to inhibit adenylyl cyclase in adipose tissue. A number of other G-protein-mediated effectors of A receptors have subsequently been discovered these include activation of K+ channels, extensively characterized in striatal neurons [13], and inhibition of Ca2+ channels, extensively characterized in dorsal root ganglion cells [14]. Activation of A receptors has been shown to produce a species-dependent stimulation or inhibition of the phosphatidylinositol pathway in cerebral cortex. In other tissues, activation of A receptors results in synergistic activation of the phosphatidylinositol pathway in concert with Ca2+-mobilizing hormones or neurotransmitters [15]. The effectors of A adenosine receptors and other purinergic receptor subtypes are summarized in Table 17-2. [Pg.313]

Fig. 3. Mechanisms of vasocontraction and vasorelaxation in endothelial and smooth muscle cells. COX cyclooxygenase, eNOS endothelial nitric oxide synthase, HO-1 heme oxygenase-1, EET epoxyeicosatrienoic acid, EDHF endothelium-derived hyperpolariz-ing factor, PGI2 prostaglandin I2, NO nitric oxide, CO carbon monoxide, PLC phospholipase C, IP3 inositol 1,4,5-trisphosphate, DAG diacylglycerol, ER/SR endo-plasmic/sarcoplasmic reticulum, AC adenylyl cyclase, cAMP cyclic adenosine monophosphate, sGC soluble guanylyl cyclase, cGMP cyclic guanosine monophosphate. Fig. 3. Mechanisms of vasocontraction and vasorelaxation in endothelial and smooth muscle cells. COX cyclooxygenase, eNOS endothelial nitric oxide synthase, HO-1 heme oxygenase-1, EET epoxyeicosatrienoic acid, EDHF endothelium-derived hyperpolariz-ing factor, PGI2 prostaglandin I2, NO nitric oxide, CO carbon monoxide, PLC phospholipase C, IP3 inositol 1,4,5-trisphosphate, DAG diacylglycerol, ER/SR endo-plasmic/sarcoplasmic reticulum, AC adenylyl cyclase, cAMP cyclic adenosine monophosphate, sGC soluble guanylyl cyclase, cGMP cyclic guanosine monophosphate.
This enzyme [EC 2.7.7.51] catalyzes reaction of adenylyl-sulfate and ammonia to form adenosine 5 -phosphorami-date and sulfate. [Pg.36]

The activation of adenylyl cyclase enables it to catalyze the conversion of adenosine triphosphate (ATP) to 3 5 -cyclic adenosine monophosphate (cAMP), which in turn can activate a number of enzymes known as kinases. Each kinase phosphorylates a specific protein or proteins. Such phosphorylation reactions are known to be involved in the opening of some calcium channels as well as in the activation of other enzymes. In this system, the receptor is in the membrane with its binding site on the outer surface. The G protein is totally within the membrane while the adenylyl cyclase is within the membrane but projects into the interior of the cell. The cAMP is generated within the cell (see Rgure 10.4). [Pg.11]

Activation of M2 and M4 receptors inhibits adenylyl cyclase, and activation of M2 receptors opens potassium channels. The opening of potassium channels hy-perpolarizes the membrane potential and decreases the excitability of cells in the sinoatrial (SA) and atrioventricular (A-V) nodes in the heart. The inhibition of adenylyl cyclase decreases cellular cyclic adenosine... [Pg.122]

Autonomic receptors further regulate calcium influx through the sarcolemma (Fig. 15.1). (3-Adrenergic stimulation results in the association of a catalytic subunit of a G protein coupled to the (3-receptor. This stimulates the enzyme adenylyl cyclase to convert ATP to cyclic adenosine monophosphate (cAMP). Increasing cAMP production results in a cAMP-dependent phosphorylation of the L-type calcium channel and a subsequent increase in the probability of the open state of the channel. This translates to an increase in transsarcolemmal calcium influx during phase 2 (the plateau phase) of the cardiac muscle action potential. The effects of transient increases in intracellular levels of cAMP are tightly con-... [Pg.152]

Several classes of drugs, notably the antipsychotics, discussed in Chapter 34, interfere with dopaminergic transmission. In general, dopamine appears to be an inhibitory neurotransmitter. Five dopamine receptors have been identified the most important and best studied are the Dj. and D2.receptor groups. The Dj receptor, which increases cyclic adenosine monophosphate (cAMP) by activation of adenylyl cyclase, is located primarily in the region of the putamen, nucleus accum-bens, and in the olfactory tubercle. The D2 receptor decreases cAMP, blocks certain calcium channels, and opens certain potassium channels. [Pg.282]


See other pages where Adenylyl adenosine is mentioned: [Pg.449]    [Pg.284]    [Pg.478]    [Pg.28]    [Pg.34]    [Pg.36]    [Pg.69]    [Pg.473]    [Pg.478]    [Pg.1038]    [Pg.1274]    [Pg.65]    [Pg.187]    [Pg.188]    [Pg.373]    [Pg.117]    [Pg.339]    [Pg.61]    [Pg.362]    [Pg.81]    [Pg.110]    [Pg.76]    [Pg.516]   


SEARCH



Adenosine receptor ligands Adenylyl cyclase

Adenylyl cyclase adenosine binding

Adenylyl-

Adenylyl- -adenosine phosphate

Adenylylation

© 2024 chempedia.info