Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acrylonitrile oxidation

A new synthesis of isoxazoles is by successive treatment of a ketoxime with butyllithi-um, the ester of a carboxylic acid and sulfuric acid, e.g. 1 -> 2 (94S989). Hitrovinyl oximes 3 (R1, R3 = alkyl or aryl) undergo oxidative cyclization to isoxazoles 4 by the action of DDQ or iodine/potassium iodide (94JHC861). Flash-vacuum pyrolysis of the 1,3-dipolar cycloadduct 5 of acrylonitrile oxide to norbornadiene results in a retro-Diels-Alder reaction to give cyclopentadiene and 3-vinylisoxazole 6 (94CC2661). [Pg.192]

Uses Catalyst in polymerization of acrylonitrile oxidizing agent... [Pg.873]

The formation of NOx is temperature dependent for all catalysts evaluated. At temperatures below 300°C all catalysts yielded from 0% to less than 5% NOx. However, at 300°C or higher, the NOx yield increased sharply for all catalysts evaluated. The chromium-based catalyst showed the highest NO formation. All of the acrylonitrile oxidized was converted into NO. The NO formation vs the percentage of acrylonitrile converted is shown in Fig. 7.18. At 100% conversion only 2.5% NOx was formed for the Pt (HS) catalyst, while 20% and 25% NOx were formed for the manganese catalyst and for the Pt (LS) catalyst, respectively. This is due to the fact the Pt (HS) catalyst is much more active than both the Pt (LS) and the manganese catalyst, and therefore can reach complete conversion at a lower temperature, hence the lower NOx conversion. As the temperature increases it can be seen that the NOx yield increases rapidly. [Pg.188]

The oxidation of terminal alkenes with an EWG in alcohols or ethylene glycol affords acetals of aldehydes chemoselectively. Acrylonitrile is converted into l,3-dioxolan-2-ylacetonitrile (69) in ethylene glycol and to 3,3-dimetho.xy-propionitrile (70) in methanol[28j. 3,3-Dimethoxypropionitrile (70) is produced commercially in MeOH from acrylonitrile by use of methyl nitrite (71) as a unique leoxidant of Pd(0). Methyl nitrite (71) is regenerated by the oxidation of NO with oxygen in MeOH. Methyl nitrite is a gas, which can be separated easily from water formed in the oxidation[3]. [Pg.31]

The acylpalladium complex formed from acyl halides undergoes intramolecular alkene insertion. 2,5-Hexadienoyl chloride (894) is converted into phenol in its attempted Rosenmund reduction[759]. The reaction is explained by the oxidative addition, intramolecular alkene insertion to generate 895, and / -elimination. Chloroformate will be a useful compound for the preparation of a, /3-unsaturated esters if its oxidative addition and alkene insertion are possible. An intramolecular version is known, namely homoallylic chloroformates are converted into a-methylene-7-butyrolactones in moderate yields[760]. As another example, the homoallylic chloroformamide 896 is converted into the q-methylene- -butyrolactams 897 and 898[761]. An intermolecular version of alkene insertion into acyl chlorides is known only with bridgehead acid chlorides. Adamantanecarbonyl chloride (899) reacts with acrylonitrile to give the unsaturated ketone 900[762],... [Pg.260]

Donor substituents on the vinyl group further enhance reactivity towards electrophilic dienophiles. Equations 8.6 and 8.7 illustrate the use of such functionalized vinylpyrroles in indole synthesis[2,3]. In both of these examples, the use of acetyleneic dienophiles leads to fully aromatic products. Evidently this must occur as the result of oxidation by atmospheric oxygen. With vinylpyrrole 8.6A, adducts were also isolated from dienophiles such as methyl acrylate, dimethyl maleate, dimethyl fumarate, acrolein, acrylonitrile, maleic anhydride, W-methylmaleimide and naphthoquinone. These tetrahydroindole adducts could be aromatized with DDQ, although the overall yields were modest[3]. [Pg.84]

PROPENE The major use of propene is in the produc tion of polypropylene Two other propene derived organic chemicals acrylonitrile and propylene oxide are also starting materials for polymer synthesis Acrylonitrile is used to make acrylic fibers (see Table 6 5) and propylene oxide is one component in the preparation of polyurethane polymers Cumene itself has no direct uses but rather serves as the starting material in a process that yields two valuable indus trial chemicals acetone and phenol... [Pg.269]

Processes have been developed whereby the oxygen is suppHed from the crystal lattice of a metal-oxide catalyst (5) (see Acrylonitrile Methacrylic acid AND derivatives). [Pg.217]

In 1957 Standard Oil of Ohio (Sohio) discovered bismuth molybdate catalysts capable of producing high yields of acrolein at high propylene conversions (>90%) and at low pressures (12). Over the next 30 years much industrial and academic research and development was devoted to improving these catalysts, which are used in the production processes for acrolein, acryUc acid, and acrylonitrile. AH commercial acrolein manufacturing processes known today are based on propylene oxidation and use bismuth molybdate based catalysts. [Pg.123]

Propylene requirements for acrylates remain small compared to other chemical uses (polypropylene, acrylonitrile, propylene oxide, 2-propanol, and cumene for acetone and phenol). Hence, cost and availabihty are expected to remain attractive and new acrylate capacity should continue to be propylene-based until after the turn of the century. [Pg.152]

Although some very minor manufacturers of acryhc acid may still use hydrolysis of acrylonitrile (see below), essentially all other plants woddwide use the propylene oxidation process. [Pg.155]

The yield of acrylonitrile based on propylene is generally lower than the yield of acryhc acid based on the dkect oxidation of propylene. Hence, for the large volume manufacture of acrylates, the acrylonitrile route is not attractive since additional processing steps are involved and the ultimate yield of acrylate based on propylene is much lower. Hydrolysis of acrylonitrile can be controUed to provide acrylamide rather than acryhc acid, but acryhc acid is a by-product in such a process (80). [Pg.155]

The sulfuric acid hydrolysis may be performed as a batch or continuous operation. Acrylonitrile is converted to acrylamide sulfate by treatment with a small excess of 85% sulfuric acid at 80—100°C. A hold-time of about 1 h provides complete conversion of the acrylonitrile. The reaction mixture may be hydrolyzed and the aqueous acryhc acid recovered by extraction and purified as described under the propylene oxidation process prior to esterification. Alternatively, after reaction with excess alcohol, a mixture of acryhc ester and alcohol is distilled and excess alcohol is recovered by aqueous extractive distillation. The ester in both cases is purified by distillation. [Pg.155]

Although acrylonitrile manufacture from propylene and ammonia was first patented in 1949 (30), it was not until 1959, when Sohio developed a catalyst capable of producing acrylonitrile with high selectivity, that commercial manufacture from propylene became economically viable (1). Production improvements over the past 30 years have stemmed largely from development of several generations of increasingly more efficient catalysts. These catalysts are multicomponent mixed metal oxides mostly based on bismuth—molybdenum oxide. Other types of catalysts that have been used commercially are based on iron—antimony oxide, uranium—antimony oxide, and tellurium-molybdenum oxide. [Pg.182]

Other routes to acrylonitrile, none of which achieved large-scale commercial appHcation, are acetaldehyde and HCN (56), propionittile dehydrogenation (57,58), and propylene and nitric oxide (59,60) ... [Pg.184]

Numerous patents have been issued disclosing catalysts and process schemes for manufacture of acrylonitrile from propane. These include the direct heterogeneously cataly2ed ammoxidation of propane to acrylonitrile using mixed metal oxide catalysts (61—64). [Pg.184]

Acrylonitrile is combustible and ignites readily, producing toxic combustion products such as hydrogen cyanide, nitrogen oxides, and carbon monoxide. It forms explosive mixtures with air and must be handled in weU-ventilated areas and kept away from any source of ignition, since the vapor can spread to distant ignition sources and flash back. [Pg.185]

Thermal Oxidative Stability. ABS undergoes autoxidation and the kinetic features of the oxygen consumption reaction are consistent with an autocatalytic free-radical chain mechanism. Comparisons of the rate of oxidation of ABS with that of polybutadiene and styrene—acrylonitrile copolymer indicate that the polybutadiene component is significantly more sensitive to oxidation than the thermoplastic component (31—33). Oxidation of polybutadiene under these conditions results in embrittlement of the mbber because of cross-linking such embrittlement of the elastomer in ABS results in the loss of impact resistance. Studies have also indicated that oxidation causes detachment of the grafted styrene—acrylonitrile copolymer from the elastomer which contributes to impact deterioration (34). [Pg.203]

Examination of oven-aged samples has demonstrated that substantial degradation is limited to the outer surface (34), ie, the oxidation process is diffusion limited. Consistent with this conclusion is the observation that oxidation rates are dependent on sample thickness (32). Impact property measurements by high speed puncture tests have shown that the critical thickness of the degraded layer at which surface fracture changes from ductile to brittle is about 0.2 mm. Removal of the degraded layer restores ductiHty (34). Effects of embrittled surface thickness on impact have been studied using ABS coated with styrene—acrylonitrile copolymer (35). [Pg.203]

HydroxyethyUiydrazine (11) is a plant growth regulator. It is also used to make a coccidiostat, furazoHdone, and has been proposed, as has (14), as a stabilizer in the polymerization of acrylonitrile (72,73). With excess epoxide, polysubstitution occurs and polyol chains can form to give poly(hydroxyaLkyl) hydrazines which have been patented for the preparation of cellular polyurethanes (74) and as corrosion inhibitors for hydrauHc fluids (qv) (75). DialkyUiydrazines, R2NNH2, and alkylene oxides form the very reactive amineimines (15) which react further with esters to yield aminimides (16) ... [Pg.278]

Uses. Magnesium alkyls are used as polymerization catalysts for alpha-alkenes and dienes, such as the polymerization of ethylene (qv), and in combination with aluminum alkyls and the transition-metal haUdes (16—18). Magnesium alkyls have been used in conjunction with other compounds in the polymerization of alkene oxides, alkene sulfides, acrylonitrile (qv), and polar vinyl monomers (19—22). Magnesium alkyls can be used as a Hquid detergents (23). Also, magnesium alkyls have been used as fuel additives and for the suppression of soot in combustion of residual furnace oil (24). [Pg.340]

MAA and MMA may also be prepared via the ammoxidation of isobutylene to give meth acrylonitrile as the key intermediate. A mixture of isobutjiene, ammonia, and air are passed over a complex mixed metal oxide catalyst at elevated temperatures to give a 70—80% yield of methacrylonitrile. Suitable catalysts often include mixtures of molybdenum, bismuth, iron, and antimony, in addition to a noble metal (131—133). The meth acrylonitrile formed may then be hydrolyzed to methacrjiamide by treatment with one equivalent of sulfuric acid. The methacrjiamide can be esterified to MMA or hydrolyzed to MAA under conditions similar to those employed in the ACH process. The relatively modest yields obtainable in the ammoxidation reaction and the generation of a considerable acid waste stream combine to make this process economically less desirable than the ACH or C-4 oxidation to methacrolein processes. [Pg.253]

Oxidation Catalysis. The multiple oxidation states available in molybdenum oxide species make these exceUent catalysts in oxidation reactions. The oxidation of methanol (qv) to formaldehyde (qv) is generally carried out commercially on mixed ferric molybdate—molybdenum trioxide catalysts. The oxidation of propylene (qv) to acrolein (77) and the ammoxidation of propylene to acrylonitrile (qv) (78) are each carried out over bismuth—molybdenum oxide catalyst systems. The latter (Sohio) process produces in excess of 3.6 x 10 t/yr of acrylonitrile, which finds use in the production of fibers (qv), elastomers (qv), and water-soluble polymers. [Pg.477]

Reaction conditions depend on the reactants and usually involve acid or base catalysis. Examples of X include sulfate, acid sulfate, alkane- or arenesulfonate, chloride, bromide, hydroxyl, alkoxide, perchlorate, etc. RX can also be an alkyl orthoformate or alkyl carboxylate. The reaction of cycHc alkylating agents, eg, epoxides and a2iridines, with sodium or potassium salts of alkyl hydroperoxides also promotes formation of dialkyl peroxides (44,66). Olefinic alkylating agents include acycHc and cycHc olefinic hydrocarbons, vinyl and isopropenyl ethers, enamines, A[-vinylamides, vinyl sulfonates, divinyl sulfone, and a, P-unsaturated compounds, eg, methyl acrylate, mesityl oxide, acrylamide, and acrylonitrile (44,66). [Pg.109]

Ammonia is used in the fibers and plastic industry as the source of nitrogen for the production of caprolactam, the monomer for nylon 6. Oxidation of propylene with ammonia gives acrylonitrile (qv), used for the manufacture of acryHc fibers, resins, and elastomers. Hexamethylenetetramine (HMTA), produced from ammonia and formaldehyde, is used in the manufacture of phenoHc thermosetting resins (see Phenolic resins). Toluene 2,4-cHisocyanate (TDI), employed in the production of polyurethane foam, indirectly consumes ammonia because nitric acid is a raw material in the TDI manufacturing process (see Amines Isocyanates). Urea, which is produced from ammonia, is used in the manufacture of urea—formaldehyde synthetic resins (see Amino resins). Melamine is produced by polymerization of dicyanodiamine and high pressure, high temperature pyrolysis of urea, both in the presence of ammonia (see Cyanamides). [Pg.358]

Propjiene [115-07-17, CH2CH=CH2, is perhaps the oldest petrochemical feedstock and is one of the principal light olefins (1) (see Feedstocks). It is used widely as an alkylation (qv) or polymer—ga soline feedstock for octane improvement (see Gasoline and other motor fuels). In addition, large quantities of propylene are used ia plastics as polypropylene, and ia chemicals, eg, acrylonitrile (qv), propylene oxide (qv), 2-propanol, and cumene (qv) (see Olefin POLYMERS,polypropylene Propyl ALCOHOLS). Propylene is produced primarily as a by-product of petroleum (qv) refining and of ethylene (qv) production by steam pyrolysis. [Pg.122]

Worldwide propylene production and capacity utilization for 1992 are given in Table 6 (74). The world capacity to produce propylene reached 41.5 X 10 t in 1992 the demand for propylene amounted to 32.3 x 10 t. About 80% of propylene produced worldwide was derived from steam crackers the balance came from refinery operations and propylene dehydrogenation. The manufacture of polypropylene, a thermoplastic resin, accounted for about 45% of the total demand. Demand for other uses included manufacture of acrylonitrile (qv), oxochemicals, propylene oxide (qv), cumene (qv), isopropyl alcohol (see Propyl alcohols), and polygas chemicals. Each of these markets accounted for about 5—15% of the propylene demand in 1992 (Table 7). [Pg.127]

The uses of propylene may be loosely categorized as refinery or chemical purpose. In the refinery, propylene occurs in varying concentrations in fuel-gas streams. As a refinery feedstock, propylene is alkylated by isobutane or dimerized to produce polymer gasoHne for gasoHne blending. Commercial chemical derivatives include polypropylene, acrylonitrile, propylene oxide, isopropyl alcohol, and others. In 1992, ca 64% of U.S. propylene suppHes were consumed in the production of chemicals (74). Polypropylene has been the largest consumer of propylene since the early 1970s and is likely to dominate propylene utilization for some time. [Pg.128]


See other pages where Acrylonitrile oxidation is mentioned: [Pg.476]    [Pg.134]    [Pg.380]    [Pg.196]    [Pg.185]    [Pg.476]    [Pg.134]    [Pg.380]    [Pg.196]    [Pg.185]    [Pg.283]    [Pg.137]    [Pg.180]    [Pg.182]    [Pg.203]    [Pg.278]    [Pg.279]    [Pg.277]    [Pg.499]    [Pg.72]    [Pg.467]    [Pg.134]    [Pg.503]    [Pg.295]    [Pg.361]   
See also in sourсe #XX -- [ Pg.215 ]




SEARCH



Acrolein/acrylonitrile propylene oxidation

Acrylonitrile-butadiene-styrene thermal oxidative stability

Manufacture of Mixed Oxide Catalysts for Acrolein and Acrylonitrile

© 2024 chempedia.info