Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acrylic acid processes

Shen, M., Zheng, Y.G., and Shen, Y.C. 2009. Isolation and characterization of a novel Arthrobacter nitrogmjacolicus ZJUTB06-99, capable of converting acrylonitrile to acrylic acid. Process Biochemistry, 44 781-5. [Pg.413]

Acrolein and condensable by-products, mainly acrylic acid plus some acetic acid and acetaldehyde, are separated from nitrogen and carbon oxides in a water absorber. However in most industrial plants the product is not isolated for sale, but instead the acrolein-rich effluent is transferred to a second-stage reactor for oxidation to acrylic acid. In fact the volume of acrylic acid production ca. 4.2 Mt/a worldwide) is an order of magnitude larger than that of commercial acrolein. The propylene oxidation has supplanted earlier acrylic acid processes based on other feedstocks, such as the Reppe synthesis from acetylene, the ketene process from acetic acid and formaldehyde, or the hydrolysis of acrylonitrile or of ethylene cyanohydrin (from ethylene oxide). In addition to the (preferred) stepwise process, via acrolein (Equation 30), a... [Pg.53]

The substitution of propylene by propane as the feedstock in the current industrial process for acrylic acid manufacture would lead to many advantages " i) propane is cheaper than propylene ii) only one step would be required in contrast to the current two-step process used in industry and iii) the CO2 emissions from the global process would be lower if propane were used. Thus, taking into account the former advantages of the process from alkane, it is indeed interesting to consider substituting the current acrylic acid process in the near future. [Pg.800]

Table B.9.1 Flow Summary Table for Acrylic Acid Process in Figure B.9.1... Table B.9.1 Flow Summary Table for Acrylic Acid Process in Figure B.9.1...
The significance of industrial acrolein production may be clearer if one considers the two major uses of acrolein—direct oxidation to acryUc acid and reaction to produce methionine via 3-methyhnercaptopropionaldehyde. In acryUc acid production, acrolein is not isolated from the intermediate production stream. The 1990 acryUc acid production demand in the United States alone accounted for more than 450,000 t/yr (28), with worldwide capacity approaching 1,470,000 t/yr (29). Approximately 0.75 kg of acrolein is required to produce one kilogram of acryUc acid. The methionine production process involves the reaction of acrolein with methyl mercaptan. Worldwide methionine production was estimated at about 170,000 t/yr in 1990 (30). (See Acrylic ACID AND DERIVATIVES AmINO ACIDS, SURVEY.)... [Pg.124]

The amide group is readily hydrolyzed to acrylic acid, and this reaction is kinetically faster in base than in acid solutions (5,32,33). However, hydrolysis of N-alkyl derivatives proceeds at slower rates. The presence of an electron-with-drawing group on nitrogen not only facilitates hydrolysis but also affects the polymerization behavior of these derivatives (34,35). With concentrated sulfuric acid, acrylamide forms acrylamide sulfate salt, the intermediate of the former sulfuric acid process for producing acrylamide commercially. Further reaction of the salt with alcohols produces acrylate esters (5). In strongly alkaline anhydrous solutions a potassium salt can be formed by reaction with potassium / /-butoxide in tert-huty alcohol at room temperature (36). [Pg.134]

This process yields satisfactory monomer, either as crystals or in solution, but it also produces unwanted sulfates and waste streams. The reaction was usually mn in glass-lined equipment at 90—100°C with a residence time of 1 h. Long residence time and high reaction temperatures increase the selectivity to impurities, especially polymers and acrylic acid, which controls the properties of subsequent polymer products. [Pg.134]

Acrylic Acid Recovery. The process flow sheet (Fig. 3) shows equipment and conditions for the separations step. The acryUc acid is extracted from the absorber effluent with a solvent, such as butyl acetate, xylene, diisobutyl ketone, or mixtures, chosen for high selectivity for acryUc acid and low solubihty for water and by-products. The extraction is performed using 5—10 theoretical stages in a tower or centrifiigal extractor (46,61—65). [Pg.153]

During processing at elevated temperatures, normal precautions are needed to prevent accidental bums. Sudyn ionomers have U.S. Food and Dmg Administration clearance for food contact. Information about ionomers can be found in the articles Ethylene Acrylic acid and derivatives and Methacrylic acid and derivatives. [Pg.408]

This process, to which the raw materials are suppHed at low pressures, is continuous and gives good yields of acrylates (see Acrylic acid and derivatives). In the presence of catalytic amounts of Co2(CO)g, acetylene has been carboxylated in methanol yielding dimethyl succinate as the principal product (135). [Pg.69]

These enable temperature control with built-in exchangers between the beds or with pumparound exchangers. Converters for ammonia, 80.3, cumene, and other processes may employ as many as five or six beds in series. The Sohio process for vapor-phase oxidation of propylene to acrylic acid uses hvo beds of bismuth molybdate at 20 to 30 atm (294 to 441 psi) and 290 to 400°C (554 to 752°F). Oxidation of ethylene to ethylene oxide also is done in two stages with supported... [Pg.2102]

Degenerate Explosion it was a free radical autocatalytic process and control was difficult, but manageable. The main disadvantage was that it produced as much or more acrolein as propylene oxide. Because no market existed for acrolein at that time, the project was abandoned. Within two years, the acrylic market developed and a new project was initiated to make acrolein and acrylic acid by vapor-phase catalytic oxidation of propylene. [Pg.125]

In September 1964 the Du Pont company announced materials that had characteristics of both thermoplastics and thermosetting materials. These materials, known as ionomers, are prepared by copolymerising ethylene with a small amount (1-10 % in the basic patent) of an unsaturated carboxylic acid such as acrylic acid using the high-pressure process. Such copolymers are then treated... [Pg.277]

Because the polymer degrades before melting, polyacrylonitrile is commonly formed into fibers via a wet spinning process. The precursor is actually a copolymer of acrylonitrile and other monomer(s) which are added to control the oxidation rate and lower the glass transition temperature of the material. Common copolymers include vinyl acetate, methyl acrylate, methyl methacrylate, acrylic acid, itaconic acid, and methacrylic acid [1,2]. [Pg.120]

The new propylene oxidation process uses less hazardous materials to manufacture acrylic acid, followed by esterification with the appropriate alcohol (Hochheiser, 1986) ... [Pg.37]

The 2-phenyl-2-ethyl-pentane-1,5-diacid-mononitrile-(1) of melting point 72° to 76°C, used as starting material in this process, can be produced for example from o-phenyl-butyric acid nitrile by condensation with acrylic acid methyl ester and subsequent hydrolysis of the thus-obtained 2-phenyl-2-ethyl-pentane-1,5-diacid-monomethyl ester-mononltrile-(l) of boiling point 176° to 185°C under 12 mm pressure. [Pg.734]

Transition metal oxides or their combinations with metal oxides from the lower row 5 a elements were found to be effective catalysts for the oxidation of propene to acrolein. Examples of commercially used catalysts are supported CuO (used in the Shell process) and Bi203/Mo03 (used in the Sohio process). In both processes, the reaction is carried out at temperature and pressure ranges of 300-360°C and 1-2 atmospheres. In the Sohio process, a mixture of propylene, air, and steam is introduced to the reactor. The hot effluent is quenched to cool the product mixture and to remove the gases. Acrylic acid, a by-product from the oxidation reaction, is separated in a stripping tower where the acrolein-acetaldehyde mixture enters as an overhead stream. Acrolein is then separated from acetaldehyde in a solvent extraction tower. Finally, acrolein is distilled and the solvent recycled. [Pg.215]

There are several ways to produce acrylic acid. Currently, the main process is the direct oxidation of acrolein over a combination molybdenum-vanadium oxide catalyst system. In many acrolein processes, acrylic acid is made the main product by adding a second reactor that oxidizes acrolein to the acid. The reactor temperature is approximately 250°C ... [Pg.217]

In the case of electron-deficient monomers (e.g, acrylics) it is accepted that reaction occurs by initial addition of the sulfate radical anion to the monomer. Reactions of sulfate radical anion with acrylic acid derivatives have been shown to give rise to the sulfate adduct under neutral or basic conditions but under acidic conditions give the radical cation probahly by an addition-elimination process. [Pg.129]

Radical induced grafting may be carried out in solution, in the melt phase,292 29 or as a solid state process.296 This section will focus on melt phase grafting to polyolefin substrates but many of the considerations are generic. The direct grafting of monomers onto polymers, in particular polyolefins, in the melt phase by reactive extrusion has been widely studied. Most recently, the subject has been reviewed by Moad1 9 and by Russell.292 More details on reactive extrusion as a technique can be found in volumes edited by Xanthos," A1 Malaika and Baker et a 21 7 The process most often involves combining a frcc-radical initiator (most commonly a peroxide) and a monomer or macromonomer with the polyolefin as they are conveyed through the extruder. Monomers commonly used in this context include MAII (Section 7.6.4.1), maleimidc derivatives and malcate esters (Section 7.6.4.2), (meth)acrylic acid and (meth)acrylate esters (Section 7.6.43), S, AMS and derivatives (Section 7.6.4.4), vinylsilancs (Section 7.6.4.5) and vinyl oxazolines (Section 7.6.4.6). [Pg.390]

Another excellent but expensive acrylic acid terpolymer is Acumer 5000, a silica and magnesium silicate dispersant. Although this polymer remains effective well above 600 psig (42 bar), it is recommended that at or above this pressure, FW silica should be removed at source, using DI or some other appropriate external treatment process. [Pg.448]

A variety of ionomers have been described in the research literature, including copolymers of a) styrene with acrylic acid, b) ethyl acrylate with methacrylic acid, and (c) ethylene with methacrylic acid. A relatively recent development has been that of fluorinated sulfonate ionomers known as Nafions, a trade name of the Du Pont company. These ionomers have the general structure illustrated (10.1) and are used commercially as membranes. These ionomers are made by copolymerisation of the hydrocarbon or fluorocarbon monomers with minor amounts of the appropriate acid or ester. Copolymerisation is followed by either neutralisation or hydrolysis with a base, a process that may be carried out either in solution or in the melt. [Pg.149]

Three major non-polymer propylene derivatives are isopropanol, acetone, and acrylic acid. Isopropanol (isopropyl alcohol) is used mainly as a solvent. It has been made from propylene by reaction with sulfuric acid and water for at least the last 75 years, making its manufacture the oldest, still-running commercial organic chemical process. It is used in household rubbing alcohol because, unlike ethanol, it is unfit for human consumption even in small amounts. About 25 % of the isopropanol produced is used for making acetone, in competition with a route based on isopropylbenzene. [Pg.127]


See other pages where Acrylic acid processes is mentioned: [Pg.52]    [Pg.231]    [Pg.231]    [Pg.52]    [Pg.231]    [Pg.231]    [Pg.283]    [Pg.52]    [Pg.102]    [Pg.124]    [Pg.134]    [Pg.143]    [Pg.180]    [Pg.515]    [Pg.405]    [Pg.14]    [Pg.459]    [Pg.15]    [Pg.506]    [Pg.508]    [Pg.567]    [Pg.348]    [Pg.28]    [Pg.697]    [Pg.66]    [Pg.326]    [Pg.865]    [Pg.8]    [Pg.7]    [Pg.508]    [Pg.126]   
See also in sourсe #XX -- [ Pg.104 , Pg.860 , Pg.998 , Pg.1010 , Pg.1028 , Pg.1082 ]




SEARCH



Acetylene acrylic acid process

Acid process

Acrylic acid BASF process

Acrylic acid agglomeration processing

Acrylic acid cracking process

Acrylic acid high pressure process

Acrylic acid process control

Acrylic acid process parameters

Acrylic acid recovery process

Acrylic acid rendering processes

Sohio processes acrylic acid

© 2024 chempedia.info