Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acid chloride, alcohols from reaction with amines

Most aromatic acid chlorides impart a strongly acid reaction when shaken with water (compare Section 111,88). All are completely hydrolysed by boiling with solutions of caustic alkalis and yield no product volatile from the alkaline solution (compare Eaters, Sections 111,106 and IV, 183). They may be distinguished from acids by their facile reactions with alcohols (compare Section 111,27), phenols (compare Section IV,114), and amines (compare Sections 111,123 and IV.lOO). [Pg.795]

There is a great deal of difierence in the reactivity of different acid chlorides thhse derived from aromatic aCMs react much more slowly than those from aliphatic acids, and aryl sulfonyl chlorides react even more slowly. Thus, when benzoyl chloride is dissolved in an excess of ethyl alcohol and kef>t at 0 G, 4 hr is required for complete reaction, but acetyl chloride reacts practically instantly. To speed up the reaction of a sluggish acid chloride, the mixture may be heated, or the Schotten-Bauihann method may be used [Reaction (17)], i.e., the alcohol or phenol is mixed with 10 or even 25 per cent sodium hydroxide solution, and the acid chloride is added slowly with dgorous agitation, while the temperature of the mixture is kept at or below 0°G. Instead of aqueous alkali, anhydrous tertiary amines may be used. The cold reactants are mixed, but the mixture may be heated later. [Pg.718]

The main applications of oxalyl chloride, as described in Chapter 4, are the formation of aryl isocyanates and chloroformates (by reactions with amines and hydroxylic substrates, respectively), and the formation of acyl chlorides from carboxylic acids under very mild conditions. Oxalyl chloride reacts with amides to give acyl isocyanates, and it is used with dimethyl sulfoxide as a mild reagent for the oxidation of alcohols (Swern-type oxidation). It is also used with N,N-dimethylformamide as a mild reagent for chlorination and formylation. Oxalyl chloride is widely used in commercial formulations of speciality polymers, antioxidants, photographic chemicals, X-ray contrasting agents, and chemiluminescent materials. Other physical properties are presented in Chapter 3. [Pg.24]

Place 1 0 g. of the monobasic acid and 2 g. of aniline or p-toluidine in a dry test-tube, attach a short air condenser and heat the mixture in an oil bath at 140-160° for 2 hours do not reflux too vigorously an acid that boils below this temperature range and only allow steam to escape from the top of the condenser. For a sodium salt, use the proportions of 1 g. of salt to 1 5 g. of the base. If the acid is dibasic, employ double the quantity of amine and a reaction temperature of 180-200° incidentally, the procedure is recommended for dibasic acids since the latter frequently give anhydrides with thionyl chloride. Powder the cold reaction mixture, triturate it with 20-30 ml. of 10 per cent, hydrochloric acid, and recrystallise from dilute alcohol. [Pg.362]

Primary aromatic amines differ from primary aliphatic amines in their reaction with nitrous acid. Whereas the latter yield the corresponding alcohols (RNHj — ROH) without formation of intermediate products see Section 111,123, test (i), primary aromatic amines 3neld diazonium salts. Thus aniline gives phcnyldiazonium chloride (sometimes termed benzene-diazonium chloride) CjHbNj- +C1 the exact mode of formation is not known, but a possible route is through the phenjdnitrosoammonium ion tlius ... [Pg.590]

Method 1. Treat 2 0 g. of the mixture of amines with 40 ml. of 10 per cent, sodium hydroxide solution and add 4 g. (3 ml.) of benzenesulphonyl chloi de (or 4 g. of p-toluenesulphonyl chloride) in small portions. Warm on a water bath to complete the reaction. Acidify the alkaline solution with dilute hydrochloric acid when the sulphonamides of the primary and secondary amines are precipitated. Filter off the solid and wash it with a little cold water the tertiary amine will be present in the filtrate. To convert any disulphOnamide that may have been formed from the primary amine into the sulphonamide, boil the solid under reflux with 2 0 g. of sodium dissolved in 40 ml. of absolute ethyl alcohol for 30 minutes. Dilute with a little water and distil off the alcohol filter off the precipitate of the sulphonamide of the secondary amine. Acidify the filtrate with dilute hydrochloric acid to precipitate the derivative of the primary amine. Recrystallise the respective derivatives from alcohol or from dilute alcohol, and identify them inter alia by a determination of the m.p. [Pg.651]

Method 2. Place a 3 0 g. sample of the mixture of amines in a flask, add 6g. (4-5 ml.) of benzenesulphonyl chloride (or 6 g. of p-toluenesulphonyl chloride) and 100 ml. of a 5 per cent, solution of sodium hydroxide. Stopper the flask and shake vigorously until the odour of the acid chloride has disappeared open the flask occasionally to release the pressure developed by the heat of the reaction. AUow the mixture to cool, and dissolve any insoluble material in 60-75 ml. of ether. If a solid insoluble in both the aqueous and ether layer appears at this point (it is probably the sparingly soluble salt of a primary amine, e.g., a long chain compound of the type CjH5(CH2) NHj), add 25 ml. of water and shake if it does not dissolve, filter it off. Separate the ether and aqueous layers. The ether layer will contain the unchanged tertiary amine and the sulphonamide of the secondary amine. Acidify the alkaline aqueous layer with dilute hydrochloric acid, filter off the sulphonamide of the primary amine, and recrystaUise it from dilute alcohol. Extract the ether layer with sufficient 5 per cent, hydrochloric acid to remove all the tertiary amine present. Evaporate the ether to obtain the sulphonamide of the secondary amine recrystaUise it from alcohol or dilute alcohol. FinaUy, render the hydrochloric acid extract alkaline by the addition of dilute sodium hydroxide solution, and isolate the tertiary amine. [Pg.651]

Reduction of a nitro compound to a primary amine. In a 50 ml. round-bottomed or conical flask fitted with a reflux condenser, place 1 g. of the nitro compound and 2 g. of granulated tin. Measure out 10 ml. of concentrated hydrochloric acid and add it in three equal portions to the mixtiue shake thoroughly after each addition. When the vigorous reaction subsides, heat under reflux on a water bath until the nitro compound has completely reacted (20-30 minutes). Shake the reaction mixture from time to time if the nitro compound appears to be very insoluble, add 5 ml. of alcohol. Cool the reaction mixture, and add 20-40 per cent, sodium hydroxide solution imtil the precipitate of tin hydroxide dissolves. Extract the resulting amine from the cooled solution with ether, and remove the ether by distillation. Examine the residue with regard to its solubility in 5 per cent, hydrochloric acid and its reaction with acetyl chloride or benzene-sulphonyl chloride. [Pg.1076]

With a common intermediate from the Medicinal Chemistry synthesis now in hand in enantiomerically upgraded form, optimization of the conversion to the amine was addressed, with particular emphasis on safety evaluation of the azide displacement step (Scheme 9.7). Hence, alcohol 6 was reacted with methanesul-fonyl chloride in the presence of triethylamine to afford a 95% yield of the desired mesylate as an oil. Displacement of the mesylate using sodium azide in DMF afforded azide 7 in around 85% assay yield. However, a major by-product of the reaction was found to be alkene 17, formed from an elimination pathway with concomitant formation of the hazardous hydrazoic acid. To evaluate this potential safety hazard for process scale-up, online FTIR was used to monitor the presence of hydrazoic acid in the head-space, confirming that this was indeed formed during the reaction [7]. It was also observed that the amount of hydrazoic acid in the headspace could be completely suppressed by the addition of an organic base such as diisopropylethylamine to the reaction, with the use of inorganic bases such as... [Pg.247]


See other pages where Acid chloride, alcohols from reaction with amines is mentioned: [Pg.542]    [Pg.263]    [Pg.880]    [Pg.542]    [Pg.38]    [Pg.111]    [Pg.197]    [Pg.52]    [Pg.38]    [Pg.4522]    [Pg.1035]    [Pg.53]    [Pg.135]    [Pg.272]    [Pg.40]    [Pg.29]    [Pg.73]    [Pg.173]    [Pg.121]    [Pg.653]    [Pg.310]    [Pg.617]    [Pg.219]   
See also in sourсe #XX -- [ Pg.803 ]




SEARCH



Acid chloride, alcohols from

Acid chlorides, reactions

Alcohol reaction with acid chlorides

Alcohols amination

Alcohols amines

Alcohols from amines

Amine from acid chlorides

Amine reaction with acid chlorides

Amine with acid chlorides

Amines chlorides

Amines reaction + acid chlorides

Amines reaction with acids

Chloride reaction with acid

Chlorides alcohols

Chlorides, from alcohols

From aminals

From amines

Reaction with alcohols

Reaction with amines

© 2024 chempedia.info