Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetals acetylenic

Grouping Acetone Ethane Ethyl-acetate Acetylene Ethyl amine Ethylene Acetaldehyde Ethyl glycol Crude oil Ethyl-ether Carbon disulphide Ethyl Nitrite... [Pg.179]

Esters (Sulfinates,Sulfonates, Acetates, Acetylenic Carboxylates) 300... [Pg.291]

In an aqueous medium buffered by sodium acetate, acetylenic ketones react with potassium telluride to give bisfacylvinyl] telluriums. These reactions were performed in the presence of hydroxylamine-Osulfonic acid with the goal of preparing 2-azatellurophenes. The formation of divinyl tellurium compounds competes with the formation of the heterocycles6. [Pg.380]

Acetaldehyde diisopentyl acetal Acetylene (29.5 g) is led into isopentyl alcohol (200 g) containing a 63 % solution (10 g) of boron trifluoride in methanol and also some (1 g) mercury(n) oxide. When reaction is over, the solution is washed with a little water and sodium carbonate solution and extracted with ether. The ethereal solution is dried over K2C03 and fractionated. [Pg.298]

Ethyne is the starting point for the manufacture of a wide range of chemicals, amongst which the most important are acrylonitrile, vinyl chloride, vinyl acetate, ethanal, ethanoic acid, tri- and perchloro-ethylene, neoprene and polyvinyl alcohol. Processes such as vinylation, ethinylation, carbonylation, oligomerization and Reppe processes offer the possibility of producing various organic chemicals cheaply. Used in oxy-acetylene welding. [Pg.169]

They are colourless liquids with characteristic odours, and are prepared by the condensation of ketones with alkyl orthoformates in the presence of alcohols, or by the reaction of acetylenes with alcohols in presence of HgO and BF3. In some cases trichloroethanoic acid is used as the catalyst. They lose alcohol when heated and form vinyl ethers. Exchange of alcohol groups occurs when the ketals of the lower alcohols are boiled with alcohols of greater molecular weight. See acetals. [Pg.230]

Acetonylacetone is available commercially as a by-product of the manufacture of acetic acid from acetylene. It may be prepared by condensation of chloroacetone with ethyl sodioacetoacetate the resulting ethyl acetonylacetoacetate when heated with water under pressure at 160° undergoes ketonic scission to give acetonylacetone. [Pg.837]

Vinyl compounds. Vinyl chloride (prepared from acetylene and hydrogen chloride) 3 ields polyvinyl chloride (P.V.C.), which is employed as a rubber substitute and for other purposes. Vinyl acetate (from... [Pg.1015]

Without carbon, the basis for life would be impossible. While it has been thought that silicon might take the place of carbon in forming a host of similar compounds, it is now not possible to form stable compounds with very long chains of silicon atoms. The atmosphere of Mars contains 96.2% CO2. Some of the most important compounds of carbon are carbon dioxide (CO2), carbon monoxide (CO), carbon disulfide (CS2), chloroform (CHCb), carbon tetrachloride (CCk), methane (CHr), ethylene (C2H4), acetylene (C2H2), benzene (CeHe), acetic acid (CHsCOOH), and their derivatives. [Pg.16]

To make her own HBr solution the chemist needs to go down to the local specialty gas supplier. These sorts of businesses sell tanks of oxygen to hospitals, acetylene tanks to welding shops and, yes, HBr to underground chemists. The chemist places 200g of acetic acid in a small PP container or flask and then weighs the flask with its contents. Next, the flask is stirred in an ice bath tray that has just a small amount of ice to keep the contents cool and... [Pg.144]

The synthesis of allenes from organocopper compounds and acetylenic acetates was... [Pg.153]

Alkynyl anions are more stable = 22) than the more saturated alkyl or alkenyl anions (p/Tj = 40-45). They may be obtained directly from terminal acetylenes by treatment with strong base, e.g. sodium amide (pA, of NH 35). Frequently magnesium acetylides are made in proton-metal exchange reactions with more reactive Grignard reagents. Copper and mercury acetylides are formed directly from the corresponding metal acetates and acetylenes under neutral conditions (G.E. Coates, 1977 R.P. Houghton, 1979). [Pg.5]

The majority of preparative methods which have been used for obtaining cyclopropane derivatives involve carbene addition to an olefmic bond, if acetylenes are used in the reaction, cyclopropenes are obtained. Heteroatom-substituted or vinyl cydopropanes come from alkenyl bromides or enol acetates (A. de Meijere, 1979 E. J. Corey, 1975 B E. Wenkert, 1970 A). The carbenes needed for cyclopropane syntheses can be obtained in situ by a-elimination of hydrogen halides with strong bases (R. Kdstcr, 1971 E.J. Corey, 1975 B), by copper catalyzed decomposition of diazo compounds (E. Wenkert, 1970 A S.D. Burke, 1979 N.J. Turro, 1966), or by reductive elimination of iodine from gem-diiodides (J. Nishimura, 1969 D. Wen-disch, 1971 J.M. Denis, 1972 H.E. Simmons, 1973 C. Girard, 1974),... [Pg.74]

Alkynes with EWGs are poor substrates for the coupling with halides. Therefore, instead of the inactive propynoate, triethyl orthopropynoate (350) is used for the coupling with aryl halides to prepare the arylpropynoate 351. The coupling product 353 of 3,3-dicthoxy-l-propyne (352) with an aryl halide is the precursor of an alkynal[260]. The coupling of ethoxy) tributylstan-nyl)acetylene (354) with aryl halides is a good synthetic method for the aryl-acetate 355[261]. [Pg.177]

Acetaldehyde, first used extensively during World War I as a starting material for making acetone [67-64-1] from acetic acid [64-19-7] is currendy an important intermediate in the production of acetic acid, acetic anhydride [108-24-7] ethyl acetate [141-78-6] peracetic acid [79-21 -0] pentaerythritol [115-77-5] chloral [302-17-0], glyoxal [107-22-2], aLkylamines, and pyridines. Commercial processes for acetaldehyde production include the oxidation or dehydrogenation of ethanol, the addition of water to acetylene, the partial oxidation of hydrocarbons, and the direct oxidation of ethylene [74-85-1]. In 1989, it was estimated that 28 companies having more than 98% of the wodd s 2.5 megaton per year plant capacity used the Wacker-Hoechst processes for the direct oxidation of ethylene. [Pg.48]

Since 1960, the Hquid-phase oxidation of ethylene has been the process of choice for the manufacture of acetaldehyde. There is, however, stiU some commercial production by the partial oxidation of ethyl alcohol and hydration of acetylene. The economics of the various processes are strongly dependent on the prices of the feedstocks. Acetaldehyde is also formed as a coproduct in the high temperature oxidation of butane. A more recently developed rhodium catalyzed process produces acetaldehyde from synthesis gas as a coproduct with ethyl alcohol and acetic acid (83—94). [Pg.51]

Until World War 1 acetone was manufactured commercially by the dry distillation of calcium acetate from lime and pyroligneous acid (wood distillate) (9). During the war processes for acetic acid from acetylene and by fermentation supplanted the pyroligneous acid (10). In turn these methods were displaced by the process developed for the bacterial fermentation of carbohydrates (cornstarch and molasses) to acetone and alcohols (11). At one time Pubhcker Industries, Commercial Solvents, and National Distillers had combined biofermentation capacity of 22,700 metric tons of acetone per year. Biofermentation became noncompetitive around 1960 because of the economics of scale of the isopropyl alcohol dehydrogenation and cumene hydroperoxide processes. [Pg.94]

Because of its relatively high, price, there have been continuing efforts to replace acetylene in its major appHcations with cheaper raw materials. Such efforts have been successful, particularly in the United States, where ethylene has displaced acetylene as raw material for acetaldehyde, acetic acid, vinyl acetate, and chlorinated solvents. Only a few percent of U.S. vinyl chloride production is still based on acetylene. Propjiene has replaced acetylene as feed for acrylates and acrylonitrile. Even some recent production of traditional Reppe acetylene chemicals, such as butanediol and butyrolactone, is based on new raw materials. [Pg.102]

Vinyl Acetate. Vinyl acetate [108-05-04], C4H3O2, used to be manufactured by addition of acetic acid to acetylene. [Pg.102]

Liquid- and vapor-phase processes have been described the latter appear to be advantageous. Supported cadmium, zinc, or mercury salts are used as catalysts. In 1963 it was estimated that 85% of U.S. vinyl acetate capacity was based on acetylene, but it has been completely replaced since about 1982 by newer technology using oxidative addition of acetic acid to ethylene (2) (see Vinyl polymers). In western Europe production of vinyl acetate from acetylene stiU remains a significant commercial route. [Pg.102]

In the presence of acid catalysts, butynediol and aldehydes (47) or acetals (48) give polymeric acetals, useful intermediates for acetylenic polyurethanes suitable for high energy soHd propellants. [Pg.105]

Heating butanediol with acetylene in the presence of an acidic mercuric salt gives the cycHc acetal expected from butanediol and acetaldehyde (128). A commercially important reaction is with diisocyanates to form polyurethanes (129) (see Urethane POLYMERS). [Pg.108]

Catalytic vinylation has been appHed to a wide range of alcohols, phenols, thiols, carboxyUc acids, and certain amines and amides. Vinyl acetate is no longer prepared this way in the United States, although some minor vinyl esters such as stearates may still be prepared this way. However, the manufacture of vinyl-pyrrohdinone and vinyl ethers still depends on acetylene. [Pg.114]

Although the rapid cost increases and shortages of petroleum-based feedstocks forecast a decade ago have yet to materialize, shift to natural gas or coal may become necessary in the new century. Under such conditions, it is possible that acrylate manufacture via acetylene, as described above, could again become attractive. It appears that condensation of formaldehyde with acetic acid might be preferred. A coal gasification complex readily provides all of the necessary intermediates for manufacture of acrylates (92). [Pg.156]

Calcium carbide has been used in steel production to lower sulfur emissions when coke with high sulfur content is used. The principal use of carbide remains hydrolysis for acetylene (C2H2) production. Acetylene is widely used as a welding gas, and is also a versatile intermediate for the synthesis of many organic chemicals. Approximately 450,000 t of acetylene were used aimuaHy in the early 1960s for the production of such chemicals as acrylonitrile, acrylates, chlorinated solvents, chloroprene, vinyl acetate, and vinyl chloride. Since then, petroleum-derived olefins have replaced acetylene in these uses. [Pg.166]

C using a wide variety of catalysts (28) and even with no catalyst (29). Vapor-phase catalysts capable of converting acetic acid to acetone directiy convert the steam—acetylene mixture to acetone (28,30,31). [Pg.374]

Vinyl ethers are prepared in a solution process at 150—200°C with alkaH metal hydroxide catalysts (32—34), although a vapor-phase process has been reported (35). A wide variety of vinyl ethers are produced commercially. Vinyl acetate has been manufactured from acetic acid and acetylene in a vapor-phase process using zinc acetate catalyst (36,37), but ethylene is the currently preferred raw material. Vinyl derivatives of amines, amides, and mercaptans can be made similarly. A/-Vinyl-2-pyrroHdinone is a commercially important monomer prepared by vinylation of 2-pyrroHdinone using a base catalyst. [Pg.374]

Chemical Uses. In Europe, products such as ethylene, acetaldehyde, acetic acid, acetone, butadiene, and isoprene have been manufactured from acetylene at one time. Wartime shortages or raw material restrictions were the basis for the choice of process. Coking coal was readily available in Europe and acetylene was easily accessible via calcium carbide. [Pg.393]

The principal chemical markets for acetylene at present are its uses in the preparation of vinyl chloride, vinyl acetate, and 1,4-butanediol. Polymers from these monomers reach the consumer in the form of surface coatings (paints, films, sheets, or textiles), containers, pipe, electrical wire insulation, adhesives, and many other products which total biUions of kg. The acetylene routes to these monomers were once dominant but have been largely displaced by newer processes based on olefinic starting materials. [Pg.393]


See other pages where Acetals acetylenic is mentioned: [Pg.5416]    [Pg.5416]    [Pg.283]    [Pg.1016]    [Pg.130]    [Pg.153]    [Pg.167]    [Pg.167]    [Pg.201]    [Pg.48]    [Pg.99]    [Pg.101]    [Pg.166]    [Pg.385]    [Pg.233]   
See also in sourсe #XX -- [ Pg.588 ]

See also in sourсe #XX -- [ Pg.588 ]

See also in sourсe #XX -- [ Pg.98 , Pg.588 ]




SEARCH



Acetic acid/acetylene route

Acetylene acetic acid from

Acetylene vinyl acetate from

Acetylene vinyl acetate process

Acetylenic acetals, preparation

Acetylenic acetals, synthesis

Chiral acetylenic acetals

Methyl acetate acetylene

Vinyl acetate acetylene—derived

© 2024 chempedia.info