Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acrylic manufacture

In the 1980s cost and availabiUty of acetylene have made it an unattractive raw material for acrylate manufacture as compared to propylene, which has been readily available at attractive cost (see Acetylene-DERIVED chemicals). As a consequence, essentially all commercial units based on acetylene, with the exception of BASF s plant at Ludwigshafen, have been shut down. AH new capacity recendy brought on stream or announced for constmction uses the propylene route. Rohm and Haas Co. has developed an alternative method based on aLkoxycarbonylation of ethylene, but has not commercialized it because of the more favorable economics of the propylene route. [Pg.152]

Although the rapid cost increases and shortages of petroleum-based feedstocks forecast a decade ago have yet to materialize, shift to natural gas or coal may become necessary in the new century. Under such conditions, it is possible that acrylate manufacture via acetylene, as described above, could again become attractive. It appears that condensation of formaldehyde with acetic acid might be preferred. A coal gasification complex readily provides all of the necessary intermediates for manufacture of acrylates (92). [Pg.156]

Reactive impact modifiers are preferred for toughening of PET since these form a stable dispersed phase by grafting to the PET matrix. Non-reactive elastomers can be dispersed into PET by intensive compounding but may coalesce downstream in the compounder. Reactive impact modifiers have functionalized end groups. Functionalization serves two purposes - first, to bond the impact modifier to the polymer matrix, and secondly to modify the interfacial energy between the polymer matrix and the impact modifier for enhanced dispersion. Some examples of commercially available reactive impact modifiers for PET are shown in Table 14.3. An example of a non-reactive elastomer that can be used in combination with reactive impact modifiers is ethylene methyl acrylate (EMA), such as the Optema EMA range of ethylene methyl acrylates manufactured by the Exxon-Mobil Chemical Company (see Section 4.2). [Pg.507]

In the presence of such catalysts as a solution of cuprous and ammonium chlorides, hydrogen cyanide adds to acetylene to give acrylonitrile (CH2=CHCN). However, this process has been replaced by processes involving ammoxidation of propylene. Similarly, the process for the manufacture of acrylic acid has been superseded by processes involving oxidation of propylene (Fig. 1) although, for some countries, acetylene may still be used in acrylate manufacture. [Pg.25]

Ethylhexyl acrylate manufacture represented about 15 percent of domestic consumption of the alcohol. The acrylate is the longest chain acrylate ester produced by esterification of acrylic acid. The monomer is used in acrylic copolymers for pressure sensitive adhesives, PVC impact modifiers, and as a comonomer with vinyl acetate and vinyl chloride in latexes for paints and textiles. Growth over the next 5 years is estimated at 6 percent per year. [Pg.90]

Acrylics. Manufacturers of acrylic fibers have not generally published or confirmed the chemical composition of their fibers (116). Acrylic fiber will generally contain 85-94% acrylonitrile the balance is made up of comonomers having a specific function, such as to provide dye affinity for specific dye classes or to regulate diffusion of dye into the fiber. A list of typical comonomers has been published (116). Acrylic fibers may also contain heat (117) and light stabilizers (116). They may also contain a delustrant such as titanium dioxide. Some products contain optical brightening agents. These materials probably never exceed 4r-5% of the total composition. The cross-sectional shapes of the fibers vary (116). [Pg.226]

Acrylic Acid, Acrylates, and Acrylonitrile. Acrylic acid [79-10-7], C3H402, and acrylates were once prepared by reaction of acetylene and carbon monoxide with water or an alcohol, using nickel carbonyl as catalyst. I11 recent years tliis process has been completely superseded in the United States by newer processes involving oxidation of propylene (2). I11 western Europe, however, acetylene is still important in acrylate manufacture (see Acrylic acid and derivatives Acrylic ester polymers). [Pg.102]

In Butyl Acrylate manufacturing—As catalyst In Pharmaceutical industries is used for manufacturing of below product—As catalyst. CIPROFLOXACIN, Persantin, Naproxen DOXYCYCLIN SULPHAMETHAXAZOLE. And produce the intermediates of Amoxicllion, Cefadroxil. [Pg.53]

Manufacturers Comments Transparent adhesive for bonding acrylic Manufacturers Comments No mix assembly adhesive. Two ... [Pg.73]


See other pages where Acrylic manufacture is mentioned: [Pg.102]    [Pg.152]    [Pg.152]    [Pg.55]    [Pg.152]    [Pg.152]    [Pg.195]    [Pg.197]    [Pg.198]    [Pg.199]    [Pg.201]    [Pg.152]    [Pg.152]    [Pg.236]   
See also in sourсe #XX -- [ Pg.55 ]




SEARCH



Acrylic acid Acrylics, polymer manufacture

Acrylic acid, manufacture

Acrylic based dispersants manufacturing

Acrylics, polymer manufacture

Acrylics, polymer manufacture spinning

Manufacturing Process for Acrylic Thickeners

Manufacturing process acrylics

© 2024 chempedia.info