Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetaldehyde effect

Onsager inverted snowball theory (Com.) relation to Smoluchowski equation in, 35 relaxation time by, 34 rotational diffusion and, 36 Ozone in the atmosphere, 108 alkene reactions with, 108 Crigee intermediate from, 108 molozonide from, 108 ethylene reaction with, 109 acetaldehyde effect on, 113 formic anhydride from, 110 sulfur dioxide effect on, 113 sulfuric acid aerosols from, 114 infrared detection of, 108 tetramethylethylene (TME) reaction with, 117... [Pg.384]

Acetal, reaction with Br, III, 167 Acetaldehyde, effect on ketonuria, II, 148... [Pg.321]

At a prolonged use of the catalyst with an ethylene-formaldehyde mixture the catalyst activity gradually decreases and complete poisoning of the catalyst takes place. The acetaldehyde effect is similar to that of formaldehyde. [Pg.455]

Reagent A is particularly useful for the treatment of the lower aliphatic aldehydes and ketones which are soluble in water cf. acetaldehyde, p. 342 acetone, p. 346). The Recent is a very dilute solution of the dinitrophenylhydrazine, and therefore is used more to detect the presence of a carbonyl group in a compound than to isolate sufficient of the hydrazone for effective recrystallisation and melting-point determination. [Pg.263]

Mixed aldol condensations can be effective only if we limit the number of reaction pos sibilities It would not be useful for example to treat a solution of acetaldehyde and propanal with base A mixture of four aldol addition products forms under these condi tions Two of the products are those of self addition... [Pg.774]

High purity acetaldehyde is desirable for oxidation. The aldehyde is diluted with solvent to moderate oxidation and to permit safer operation. In the hquid take-off process, acetaldehyde is maintained at 30—40 wt % and when a vapor product is taken, no more than 6 wt % aldehyde is in the reactor solvent. A considerable recycle stream is returned to the oxidation reactor to increase selectivity. Recycle air, chiefly nitrogen, is added to the air introducted to the reactor at 4000—4500 times the reactor volume per hour. The customary catalyst is a mixture of three parts copper acetate to one part cobalt acetate by weight. Either salt alone is less effective than the mixture. Copper acetate may be as high as 2 wt % in the reaction solvent, but cobalt acetate ought not rise above 0.5 wt %. The reaction is carried out at 45—60°C under 100—300 kPa (15—44 psi). The reaction solvent is far above the boiling point of acetaldehyde, but the reaction is so fast that Httle escapes unoxidized. This temperature helps oxygen absorption, reduces acetaldehyde losses, and inhibits anhydride hydrolysis. [Pg.76]

Staged reactions, where only part of the initial reactants are added, either to consecutive reactors or with a time lag to the same reactor, maybe used to reduce dipentaerythritol content. This technique increases the effective formaldehyde-to-acetaldehyde mole ratio, maintaining the original stoichiometric one. It also permits easier thermal control of the reaction (66,67). Both batch and continuous reaction systems are used. The former have greater flexibiHty whereas the product of the latter has improved consistency (55,68). [Pg.465]

Interest ia the toxicity of aldehydes has focused primarily on specific compounds, particularly formaldehyde, acetaldehyde, and acroleia (13). Litde evidence exists to suggest that occupational levels of exposure to aldehydes would result ia mutations, although some aldehydes are clearly mutagenic ia some test systems. There are, however, acute effects of aldehydes. [Pg.473]

Anesthesia. Materials that have unquestionable anesthetic properties are chloral hydrate [302-17-0] paraldehyde, dimethoxymethane [109-87-5] and acetaldehyde diethyl acetal. In iadustrial exposures, however, any action as an anesthesia is overshadowed by effects as a primary irritant, which prevent voluntary inhalation of any significant quantities. The small quantities which can be tolerated by inhalation are usually metabolized so rapidly that no anesthetic symptoms occur. [Pg.473]

This reaction is rapidly replacing the former ethylene-based acetaldehyde oxidation route to acetic acid. The Monsanto process employs rhodium and methyl iodide, but soluble cobalt and iridium catalysts also have been found to be effective in the presence of iodide promoters. [Pg.166]

In addition to these principal commercial uses of molybdenum catalysts, there is great research interest in molybdenum oxides, often supported on siHca, ie, MoO —Si02, as partial oxidation catalysts for such processes as methane-to-methanol or methane-to-formaldehyde (80). Both O2 and N2O have been used as oxidants, and photochemical activation of the MoO catalyst has been reported (81). The research is driven by the increased use of natural gas as a feedstock for Hquid fuels and chemicals (82). Various heteropolymolybdates (83), MoO.-containing ultrastable Y-zeoHtes (84), and certain mixed metal molybdates, eg, MnMoO Ee2(MoO)2, photoactivated CuMoO, and ZnMoO, have also been studied as partial oxidation catalysts for methane conversion to methanol or formaldehyde (80) and for the oxidation of C-4-hydrocarbons to maleic anhydride (85). Heteropolymolybdates have also been shown to effect ethylene (qv) conversion to acetaldehyde (qv) in a possible replacement for the Wacker process. [Pg.477]

Fiaal purification of propylene oxide is accompHshed by a series of conventional and extractive distillations. Impurities ia the cmde product iaclude water, methyl formate, acetone, methanol, formaldehyde, acetaldehyde, propionaldehyde, and some heavier hydrocarbons. Conventional distillation ia one or two columns separates some of the lower boiling components overhead, while taking some of the higher boilers out the bottom of the column. The reduced level of impurities are then extractively distilled ia one or more columns to provide a purified propylene oxide product. The solvent used for extractive distillation is distilled ia a conventional column to remove the impurities and then recycled (155,156). A variety of extractive solvents have been demonstrated to be effective ia purifyiag propylene oxide, as shown ia Table 4. [Pg.139]

Equation 1 is referred to as the selective reaction, equation 2 is called the nonselective reaction, and equation 3 is termed the consecutive reaction and is considered to proceed via isomerization of ethylene oxide to acetaldehyde, which undergoes rapid total combustion under the conditions present in the reactor. Only silver has been found to effect the selective partial oxidation of ethylene to ethylene oxide. The maximum selectivity for this reaction is considered to be 85.7%, based on mechanistic considerations. The best catalysts used in ethylene oxide production achieve 80—84% selectivity at commercially useful ethylene—oxygen conversion levels (68,69). [Pg.202]

Health and Safety Factors (Toxicology). Manufacture of cyanamide and calcium cyanamide does not present any serious health hazard. Ingestion of alcohoHc beverages by workmen within several hours of leaving work sometimes results in a vasomotor reaction known as cyanamide flush. Cyanamide interferes with the oxidation of alcohol and accumulation of acetaldehyde probably accounts for this temporary phenomenon. Although extremely unpleasant, it has not been known to result in serious illness or to have any permanent effect. [Pg.370]

Dehydrogenation. The dehydrogenation of ethyl alcohol to acetaldehyde can be effected by a vapor-phase reaction over various catalysts. [Pg.403]

Catalysts such as iron oxides cause isomeriza tion of the ethylene oxide to acetaldehyde with the evolution of heat. The acetaldehyde has a much lower autoignition temperature in air than does ethylene oxide, and the two effects may lead to hot-spot ignition (190,191). [Pg.465]

Most diaziridines are not sensitive towards alkali. As an exception, diaziridines derived from 2-hydroxyketones are quickly decomposed by heating with aqueous alkali. Acetaldehyde, acetic acid and ammonia are formed from (162). This reaction is not a simple N—N cleavage effected intramolecularly by a deprotonated hydroxy group, since highly purified hydroxydiaziridine (162) is quite stable towards alkali. Addition of small amounts of hydroxybutanone results in fast decomposition. An assumed reaction path — Grob fragmentation of a hydroxyketone-diaziridine adduct (163) — is in accord with these observations (B-67MI50800). [Pg.217]

The enol can be observed by NMR spectroscopy and at —20°C has a half-life of several hours. At -1-20°C the half-life is only 10 minutes. The presence of bases causes very r id isomerization to acetaldehyde via the enolate. Solvents have a significant effect on the lifetime of such unstable enols. Solvents such as DMF and DMSO, which are known to slow rates of proton exchange by hydrogen bonding, increase the lifetime of unstable enols. ... [Pg.430]

A synthesis of possible biological significance was effected by Spath and Berger, who ozonised eugenol methyl ether to 3 4-dimethoxyphenyl-acetaldehyde (Villa), which was then condensed with 3 4-dimethoxy-phenylethylamine (Vlllb), and the resulting Schiff s base (IX) treated wit hot 19 per cent, hydrochloric acid, whereby it was transformed into... [Pg.185]

Tetrahydroharman, m.p. 179-80°, has been prepared by a number of workers by a modification of this reaction, viz., by the interaction of tryptamine (3-)5-aminoethylindole) with acetaldehyde or paraldehyde and Hahn et al. have obtained a series of derivatives of tetrahydronorharman by the use of other aldehydes and a-ketonic acids under biological conditions of pH and temperature, while Asahina and Osada, by the action of aromatic acid chlorides on the same amine, have prepared a series of amides from which the corresponding substituted dihydronorharmans have been made by effecting ring closure with phosphorus pentoxide in xylene solution. [Pg.491]

Methylated spirit contains, in addition to ethyl and methyl alcohols, water, fusel-oil, acetaldehyde, and acetone. It may be freed from aldehyde by boiling with a—3 per cent, solid caustic potash on the water-bath with an upright condenser for one hour, or if larger quantities are employed, a tin bottle is preferable, which is heated directly over a small flame (see Fig. 38). It is then distilled with the apparatus shown in Fig. 39. The bottle is here surmounted with a T-piece holding a thermometer. The distillation is stopped when most of the spirit has distilled and the thermometer indicates 80°. A further purification may be effected by adding a little powdered permanganate of potash and by a second distillation, but this is rarely necessary. The same method of purification may be applied to over-proof spirit, which will henceforth be called spirit as distinguished from the purified product or absolute alcohol. [Pg.49]

The oxidation of n-butane represents a good example illustrating the effect of a catalyst on the selectivity for a certain product. The noncatalytic oxidation of n-butane is nonselective and produces a mixture of oxygenated compounds including formaldehyde, acetic acid, acetone, and alcohols. Typical weight % yields when n-butane is oxidized in the vapor phase at a temperature range of 360-450°C and approximately 7 atmospheres are formaldehyde 33%, acetaldehyde 31%, methanol 20%, acetone 4%, and mixed solvents 12%. [Pg.175]

Transition metal oxides or their combinations with metal oxides from the lower row 5 a elements were found to be effective catalysts for the oxidation of propene to acrolein. Examples of commercially used catalysts are supported CuO (used in the Shell process) and Bi203/Mo03 (used in the Sohio process). In both processes, the reaction is carried out at temperature and pressure ranges of 300-360°C and 1-2 atmospheres. In the Sohio process, a mixture of propylene, air, and steam is introduced to the reactor. The hot effluent is quenched to cool the product mixture and to remove the gases. Acrylic acid, a by-product from the oxidation reaction, is separated in a stripping tower where the acrolein-acetaldehyde mixture enters as an overhead stream. Acrolein is then separated from acetaldehyde in a solvent extraction tower. Finally, acrolein is distilled and the solvent recycled. [Pg.215]

Some of these difficulties can be circumvented. In particular a cavity-type Stark effect spectrograph has been built which seems capable of yielding relative intensities of near-by lines to within two or three per cent.32 Barrier values for acetaldehyde and fluoro-ethane have been obtained which are in excellent agreement with those from the frequency method described below. From Eq. (1) it can be seen that the error in v is... [Pg.378]

Historical. PE was first isolated by Tollens who was examining the effect of heat and reagents on formaldehyde. Apparently the crude formaldehyde he was working with contained a small % of acetaldehyde, which accounts for the PE formed. Although Tollens isolated it in 1882, it was not identified as PE until 1888 (Ref 2). Further details of the prepn and props of PE appeared in 1891 (Ref 3). The prepn is essentially a condensation betw 3 moles of formaldehyde and 1 of acetaldehyde to give an intermediate tris(hydroxymethyl)-acetaldehyde which is not isolated. An Intermolecular oxidn/redn then takes place betw this intermediate, and a 4th mole of formaldehyde, giving PE and formic ac (Ref 13, p 2). This type reaction is discussed under Cannizzaro Reaction in the Encycl (Vol 2, C25)... [Pg.558]

Not shown in Fig 13 is the effect of added water, which was found to greatly accelerate decompn at both 140° and 171°. Addition of 5 x 10"4 moles of acetaldehyde did not alter the initial decompn rate at 163°. However, addition of larger amounts (1.5 x ltT3 moles) produced explns. In a separate series of expts, it was found that about 0.5 mole of N02 was formed for every mole of PETN decompd, and this ratio decreased rapidly in the middle stages of decompn and then increased again in the final stages... [Pg.587]

Figure 4.41. Effect of Ag/YSZ catalyst potential, work function and feed partial pressure of dichloroethane on the selectivity to ethylene oxide (a) and to acetaldehyde (b). T=270°C, P=500 kPa, 8.5% 02,7.8% C2H4.77 Reprinted with permission from Academic Press. Figure 4.41. Effect of Ag/YSZ catalyst potential, work function and feed partial pressure of dichloroethane on the selectivity to ethylene oxide (a) and to acetaldehyde (b). T=270°C, P=500 kPa, 8.5% 02,7.8% C2H4.77 Reprinted with permission from Academic Press.
Figure 8.42. Effect of Ag/YSZ catalyst potential and work function on the rates of formation of ethylene oxide, acetaldehyde, and C02 at low Po/Pc2h4 ratios. T=260°C P=500 kPa 3.5% 02 9.8% C2H4 , C2H40 , CH3CHO , C02. Reprinted with permission from Academic Press. Figure 8.42. Effect of Ag/YSZ catalyst potential and work function on the rates of formation of ethylene oxide, acetaldehyde, and C02 at low Po/Pc2h4 ratios. T=260°C P=500 kPa 3.5% 02 9.8% C2H4 , C2H40 , CH3CHO , C02. Reprinted with permission from Academic Press.
It was found that both the catalytic rates and the selectivity to the various products can be altered significantly (rate changes up to 250% were observed) and reversibly under NEMCA conditions. Depending on the product, electrophobic or electrophilic behaviour is observed as shown in Fig. 8.57. In addition to the selectivity modification due to the different effect on the rate of formation of each product, acetaldehyde, which is not produced under open circuit conditions is formed at negative overpotentials (Fig. 8.58). Enhancement factor A values up to 10 were observed in this complex system.59... [Pg.409]


See other pages where Acetaldehyde effect is mentioned: [Pg.493]    [Pg.163]    [Pg.493]    [Pg.163]    [Pg.177]    [Pg.49]    [Pg.67]    [Pg.67]    [Pg.154]    [Pg.54]    [Pg.5]    [Pg.335]    [Pg.819]    [Pg.134]    [Pg.421]    [Pg.199]    [Pg.382]    [Pg.397]   
See also in sourсe #XX -- [ Pg.2 , Pg.12 , Pg.293 , Pg.296 ]




SEARCH



Acetaldehyde carcinogenic effects

Acetaldehyde health effects

Acetaldehyde physiological effects

Acetaldehyde pyrolysis effect

Isotope effects acetaldehyde

Isotope effects acetaldehyde oxidation

© 2024 chempedia.info