Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polar heads

The introduction of low quantities of surfactants (50 to 125 ppm) helps solve these two problems. The surfactant molecule has a lipophilic organic tail and a polar head that is adsorbed selectively on the metal walls of the admission system. These products have a double action ... [Pg.347]

Film stability is a primary concern for applications. LB films of photopoly-merizable polymeric amphiphiles can be made to crosslink under UV radiation to greatly enhance their thermal stability while retaining the ordered layered structure [178]. Low-molecular-weight perfluoropolyethers are important industrial lubricants for computer disk heads. These small polymers attached to a polar head form continuous films of uniform thickness on LB deposi-... [Pg.560]

Another important class of materials which can be successfiilly described by mesoscopic and contimiiim models are amphiphilic systems. Amphiphilic molecules consist of two distinct entities that like different enviromnents. Lipid molecules, for instance, comprise a polar head that likes an aqueous enviromnent and one or two hydrocarbon tails that are strongly hydrophobic. Since the two entities are chemically joined together they cannot separate into macroscopically large phases. If these amphiphiles are added to a binary mixture (say, water and oil) they greatly promote the dispersion of one component into the other. At low amphiphile... [Pg.2375]

They are water soluble because of the polar head, if one assumes that the tail is not too long. [Pg.398]

Figure 6.9 Schematic illustration of the micellization process. Cutaway view of spherical micelle shows hydrocarbon interior with polar heads on surface. Figure 6.9 Schematic illustration of the micellization process. Cutaway view of spherical micelle shows hydrocarbon interior with polar heads on surface.
The functional reaction center contains two quinone molecules. One of these, Qb (Figure 12.15), is loosely bound and can be lost during purification. The reason for the difference in the strength of binding between Qa and Qb is unknown, but as we will see later, it probably reflects a functional asymmetry in the molecule as a whole. Qa is positioned between the Fe atom and one of the pheophytin molecules (Figure 12.15). The polar-head group is outside the membrane, bound to a loop region, whereas the hydrophobic tail is... [Pg.238]

Langmuir-Blodgett films (LB) and self assembled monolayers (SAM) deposited on metal surfaces have been studied by SERS spectroscopy in several investigations. For example, mono- and bilayers of phospholipids and cholesterol deposited on a rutile prism with a silver coating have been analyzed in contact with water. The study showed that in these models of biological membranes the second layer modified the fluidity of the first monolayer, and revealed the conformation of the polar head close to the silver [4.300]. [Pg.262]

When comparable amounts of oil and water are mixed with surfactant a bicontinuous, isotropic phase is formed [6]. This bicontinuous phase, called a microemulsion, can coexist with oil- and water-rich phases [7,1]. The range of order in microemulsions is comparable to the typical length of the structure (domain size). When the strength of the surfactant (a length of the hydrocarbon chain, or a size of the polar head) and/or its concentration are large enough, the microemulsion undergoes a transition to ordered phases. One of them is the lamellar phase with a periodic stack of internal surfaces parallel to each other. In binary water-surfactant mixtures, or in... [Pg.686]

Amphipathic lipids spontaneously form a variety of structures when added to aqueous solution. All these structures form in ways that minimize contact between the hydrophobic lipid chains and the aqueous milieu. For example, when small amounts of a fatty acid are added to an aqueous solution, a mono-layer is formed at the air-water interface, with the polar head groups in contact with the water surface and the hydrophobic tails in contact with the air (Figure 9.2). Few lipid molecules are found as monomers in solution. [Pg.261]

Further addition of fatty acid eventually results in the formation of micelles. Micelles formed from an amphipathic lipid in water position the hydrophobic tails in the center of the lipid aggregation with the polar head groups facing outward. Amphipathic molecules that form micelles are characterized by a unique critical micelle concentration, or CMC. Below the CMC, individual lipid molecules predominate. Nearly all the lipid added above the CMC, however, spontaneously forms micelles. Micelles are the preferred form of aggregation in water for detergents and soaps. Some typical CMC values are listed in Figure 9.3. [Pg.261]

There are other ways in which the lateral organization (and asymmetry) of lipids in biological membranes can be altered. Eor example, cholesterol can intercalate between the phospholipid fatty acid chains, its polar hydroxyl group associated with the polar head groups. In this manner, patches of cholesterol and phospholipids can form in an otherwise homogeneous sea of pure phospholipid. This lateral asymmetry can in turn affect the function of membrane proteins and enzymes. The lateral distribution of lipids in a membrane can also be affected by proteins in the membrane. Certain integral membrane proteins prefer associations with specific lipids. Proteins may select unsaturated lipid chains over saturated chains or may prefer a specific head group over others. [Pg.266]

Particular phospholipids display characteristic transition temperatures (Tm). As shown in Table 9.1, increases with chain length, decreases with unsaturation, and depends on the nature of the polar head group. For pure phospholipid bilayers, the transition occurs over a narrow temperature range. The phase transition for dimyristoyl lecithin has a peak width of about 0.2°C. [Pg.269]

There are a few exceptions to this general rule. One of the few examples of an effect on polymer stereochemistry was provided by Dais et al.m who found that polymerization of 31 above the cmc initiated by y-irradiation at 25 °C yields polymer composed entirely of syndiolaclic dyads P(m) =0. When the double bond was distant from the polar head group in 32, the tacticity observed was similar to that observed in solution polymerization / ( )-0,18. Polymerization of 31 at higher temperatures (50 °C) initiated by AIBN also showed no sign of tacticity control. The stcrcospccific polymerization of 31 was attributed to organization of the methacrylate moiety on the surface of the micelle. [Pg.442]

The initial studies of LSDAs were carried out with oleochemicals because of their structural similarity to soap. However, since the molecular structure of an efficient LSDA is characterized by a bulky hydrophilic polar head attached to a long hydrophobic tail, it is also possible to prepare LSDAs from petrochemicals. Sulfated sulfonamide derivatives of alkylbenzenes, such as commercially available detergent alkylates, were synthesized as follows [17] ... [Pg.634]


See other pages where Polar heads is mentioned: [Pg.134]    [Pg.484]    [Pg.556]    [Pg.1708]    [Pg.2377]    [Pg.410]    [Pg.414]    [Pg.1078]    [Pg.398]    [Pg.427]    [Pg.428]    [Pg.196]    [Pg.210]    [Pg.228]    [Pg.224]    [Pg.246]    [Pg.716]    [Pg.1078]    [Pg.40]    [Pg.251]    [Pg.263]    [Pg.825]    [Pg.842]    [Pg.1328]    [Pg.8]    [Pg.179]    [Pg.710]    [Pg.637]    [Pg.17]    [Pg.326]    [Pg.443]    [Pg.465]    [Pg.466]    [Pg.207]    [Pg.214]    [Pg.118]    [Pg.118]   
See also in sourсe #XX -- [ Pg.14 ]




SEARCH



© 2024 chempedia.info