Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surfactant-water-supercritical fluid

This brief survey begins in Sec. II with studies of the aggregation behavior of the anionic surfactant AOT (sodium bis-2-ethylhexyI sulfosuccinate) and of nonionic pol-y(ethylene oxide) alkyl ethers in supercritical fluid ethane and compressed liquid propane. One- and two-phase reverse micelle systems are formed in which the volume of the oil component greatly exceeds the volume of water. In Sec. Ill we continue with investigations into three-component systems of AOT, compressed liquid propane, and water. These microemulsion systems are of the classical Winsor type that contain water and oil in relatively equal amounts. We next examine the effect of the alkane carbon number of the oil on surfactant phase behavior in Sec. IV. Unusual reversals of phase behavior occur in alkanes lighter than hexane in both reverse micelle and Winsor systems. Unusual phase behavior, together with pressure-driven phase transitions, can be explained and modeled by a modest extension of existing theories of surfactant phase behavior. Finally, Sec. V describes efforts to create surfactants suitable for use in supercritical CO2, and applications of surfactants in supercritical fluids are covered in Sec. VI. [Pg.282]

Surfactants and Colloids in Supercritical Fluids Because very few nonvolatile molecules are soluble in CO2, many types of hydrophilic or lipophilic species may be dispersed in the form of polymer latexes (e.g., polystyrene), microemulsions, macroemulsions, and inorganic suspensions of metals and metal oxides (Shah et al., op. cit.). The environmentally benign, nontoxic, and nonflammable fluids water and CO2 are the two most abundant and inexpensive solvents on earth. Fluorocarbon and hydrocarbon-based surfactants have been used to form reverse micelles, water-in-C02... [Pg.15]

Dispersions in Supercritical Fluids. The ability to design surfactants for the interface between water (or organics) and supercritical fluids... [Pg.224]

The interfacial tension is a key property for describing the formation of emulsions and microemulsions (Aveyard et al., 1990), including those in supercritical fluids (da Rocha et al., 1999), as shown in Figure 8.3, where the v-axis represents a variety of formulation variables. A minimum in y is observed at the phase inversion point where the system is balanced with respect to the partitioning of the surfactant between the phases. Here, a middle-phase emulsion is present in equilibrium with excess C02-rich (top) and aqueous-rich (bottom) phases. Upon changing any of the formulation variables away from this point—for example, the hydrophilie/C02-philic balance (HCB) in the surfactant structure—the surfactant will migrate toward one of the phases. This phase usually becomes the external phase, according to the Bancroft rule. For example, a surfactant with a low HCB, such as PFPE COO NH4+ (2500 g/mol), favors the upper C02 phase and forms w/c microemulsions with an excess water phase. Likewise, a shift in formulation variable to the left would drive the surfactant toward water to form a c/w emulsion. Studies of y versus HCB for block copolymers of propylene oxide, and ethylene oxide, and polydimethylsiloxane (PDMS) and ethylene oxide, have been used to understand microemulsion and emulsion formation, curvature, and stability (da Rocha et al., 1999). [Pg.137]

Water can be used as the solvent in the presence of added surfactants. Reactions in ionic liquids and supercritical fluids are also feasible. A variety of reagents promote cychzation, which can be achieved at room temperature. Examples of compounds that promote and accelerate the reaction include A-methyhnorphohne A-oxide, trimethylamine A-oxide, phosphine oxides, dimethylsulfoxide, alkyl methyl snlfides, molecular sieves, and lithium perchlorate. A comparison of a few promoters is seen in Scheme 246. Promoters... [Pg.3272]

Since there are various types of fluids, there are different kinds of dispersions that might be encountered in EOR. Fluids may be liquid, gaseous, or in the supercritical state. In EOR, gases are sometimes further classified as condensible (i.e., steam) or as not condensible into a liquid state of essentially the same composition. Certain fluids that contain sufficiently large concentrations of surfactant are termed microemulsions. Hence, depending on the type of oil recovery process and the conditions employed, a dispersion might be a so-called "oil-in-water" emulsion, an emulsion in which one of the fluids is a microemulsion, a foam (i.e., a dispersion of gas in a liquid), or a dispersion in which one of the phases is a supercritical fluid. [Pg.11]

Reverse micelle and microemulsion solutions are mixtures of a surfactant, a nonpolar fluid and a polar solvent (typically water) which contain organized surfactant assemblies. The properties of a micelle phase in supercritical propane and ethane have been characterized by conductivity, density, and solubility measurements. The phase behavior of surfactant-supercritical fluid solutions is shown to be dependent on pressure, in contrast to liquid systems where pressure has little or no effect. Potential applications of this new class of solvents are discussed. [Pg.91]

In the studies described here, we examine in more detail the properties of these surfactant aggregates solubilized in supercritical ethane and propane. We present the results of solubility measurements of AOT in pure ethane and propane and of conductance and density measurements of supercritical fluid reverse micelle solutions. The effect of temperature and pressure on phase behavior of ternary mixtures consisting of AOT/water/supercritical ethane or propane are also examined. We report that the phase behavior of these systems is dependent on fluid pressure in contrast to liquid systems where similar changes in pressure have little or no effect. We have focused our attention on the reverse micelle region where mixtures containing 80 to 100% by weight alkane were examined. The new evidence supports and extends our initial findings related to reverse micelle structures in supercritical fluids. We report properties of these systems which may be important in the field of enhanced oil recovery. [Pg.95]

Solubilization of Cytochrome C in propane/AOT/water solutions is particularly convincing evidence for micelle formation in supercritical fluids because it excludes the possibility of a simple ion-pair mechanism of solubilization. It seems likely that this large, water soluble enzyme is solvated by the highly hydrophobic fluids only if the polar functional groups on the surface of the protein are shielded from the fluid by surfactant molecules. [Pg.97]

The phase boundary lines for supercritical ethane at 250 and 350 bar are shown in Figure 2. The surfactant was found to be only slightly soluble in ethane below 200 bar at 37 C, so that the ternary phase behavior was studied at higher pressures where the AOT/ethane binary system is a single phase. As pressure is increased, more water is solubilized in the micelle core and larger micelles can exist in the supercritical fluid continuous phase. The maximum amount of water solubilized in the supercritical ethane-reverse micelle phase is relatively low, reaching a W value of 4 at 350 bar. [Pg.99]

The reverse micelle phase behavior in supercritical fluids is markedly different than in liquids. By increasing fluid pressure, the maximum amount of solubilized water increases, indicating that these higher molecular weight structures are better solvated by the denser fluid phase. The phase behavior of these systems is in part due to packing constraints of the surfactant molecules and the solubility of large micellar aggregates in the supercritical fluid phase. [Pg.105]

Because of the obvious importance of a COj-based system, there has been much work in the area of developing this type of supercritical fluid microemulsion. On the surface, the strategy is simple and interesting parallels can be made to the first soap or surfactants used in water thousands of years ago. For instance, with... [Pg.89]

Finally, in the discussion of reverse microemulsion systems, mention should be made of one of the most widely studied systems. The surfactant, sodium bis(2-ethylhexyl) sulfosuccinate or Aerosol-OT (AOT), is one of the most thoroughly studied reverse micelleforming surfactants since it readily forms reverse micelle and microemulsion phases in a multitude of different solvents without the addition of cosurfactants or other solvent modifiers. The phase behavior of AOT in liquid alkane/water systems is already well documented. Indeed, the first report of the existence of the formation of microemulsions in a supercritical fluid involved an AOT/alkane/ water system. A The spherical structure of an AOT/nonpolar-fluid/ water microemulsion droplet is shown in Fig. 1. In the now well-known structure, it can be seen that the two hydrocarbon tails of each AOT molecule point outward into the nonpolar phase (e g., supercritical fluid). These tails are lipophilic and are solvated by the nonpolar continuous phase solvent whereas the hydrophilic head groups are always positioned in the aqueous core. [Pg.94]

Reverse Mieelles. Reverse Micelles in supercritical fluids are currently being studied for several distinct applications (15-18). Normal micelles and microemulsions in aqueous solutions are known to be capable of increasing solution viscosity in several applications including the surfactant flooding of petroleum reservoirs.(19) If reverse micelles or microemulsions can be formed in C02> an increase in solution viscosity could possibly occur. The surfactants chosen as candidates for CO2 flooding application should be characterized by low water solubility and a strong CO2 solubilityi minimal adsorption onto the porous media and stability at reservoir conditions. (20)... [Pg.130]

The spectroscopic probe pyridine-N-oxide was used to characterize polar microdomains in reverse micelles in supercritical ethane from 50 to 300 bar. For both anionic and nonionic surfactants, the polarities of these microdomains were adjusted continuously over a wide range using modest pressure changes. The solubilization of water in the micelles increases significantly with the addition of the cosolvent octane or the co-surfactant octanol. Quantitative solubilities are reported for the first time for hydrophiles in reverse micelles in supercritical fluids. The amino acid tryptophan has been solubilized in ethane at the 0.1 wt.% level with the use of an anionic surfactant, sodium di-2-ethylhexyl sulfosuccinate (AOT). The existence of polar microdomains in aggregates in supercritical fluids at relatively low pressures, along with the adjustability of these domains with pressure, presents new possibilities for separation and reaction processes involving hydrophilic substances. [Pg.140]

Highly polar microdomains exist in reverse micelles of AOT and nonionic polyethylene oxide surfactants in ethane, even below 100 bar, both with and without cosolvents. Without cosolvents these domains are likely very small since values of Wo are small. The addition of the cosolvent octane provides a means to take up large amounts of water over a wide pressure range. The polarities in the interior of the micelles approach that of bulk water. The existence of polar microdomains in supercritical fluids at relatively low pressures presents an opportunity for new separation and reaction processes involving hydrophilic substances. [Pg.162]

Water has been shown to be an effective solvent in some chemical reactions such as free radical bromination. Supercritical fluids such as liquified carbon dioxide are already commonly used in coffee decaffeination and hops extraction. However, supercritical carbon dioxide can also be used as a replacement for organic solvents in polymerization reactions and surfactant production. Future work may involve solventless or neat reactions such as molten-state reactions, dry grind reactions, plasma-supported reactions, or solid materials-based reactions that use clay or zeolites as carriers. [Pg.333]


See other pages where Surfactant-water-supercritical fluid is mentioned: [Pg.126]    [Pg.127]    [Pg.281]    [Pg.262]    [Pg.224]    [Pg.225]    [Pg.713]    [Pg.121]    [Pg.64]    [Pg.224]    [Pg.225]    [Pg.729]    [Pg.435]    [Pg.69]    [Pg.289]    [Pg.15]    [Pg.97]    [Pg.103]    [Pg.61]    [Pg.87]    [Pg.90]    [Pg.94]    [Pg.97]    [Pg.100]    [Pg.107]    [Pg.109]    [Pg.2]    [Pg.166]    [Pg.180]   


SEARCH



Fluids water

Supercritical fluids water

Supercritical surfactant

Supercritical water

Surfactant-water-supercritical fluid systems

Water surfactant

© 2024 chempedia.info