Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Internal membrane

Prokaryotic cells have only a single membrane, the plasma membrane or cell membrane. Because they have no other membranes, prokaryotic cells contain no nucleus or organelles. Nevertheless, they possess a distinct nuclear area where a single circular chromosome is localized, and some have an internal membranous structure called a mesosome that is derived from and continuous with the cell membrane. Reactions of cellular respiration are localized on these membranes. In photosynthetic prokaryotes such as the cyanobacteria,... [Pg.24]

Plant cells contain a unique family of organelles, the plastids, of which the chloroplast is the prominent example. Chloroplasts have a double membrane envelope, an inner volume called the stroma, and an internal membrane system rich in thylakoid membranes, which enclose a third compartment, the thylakoid lumen. Chloroplasts are significantly larger than mitochondria. Other plastids are found in specialized structures such as fruits, flower petals, and roots and have specialized roles. [Pg.29]

Although the interior of a prokaryotic cell is not subdivided into compartments by internal membranes, the cell still shows some segregation of metabolism. For example, certain metabolic pathways, such as phospholipid synthesis and oxidative phosphorylation, are localized in the plasma membrane. Also, protein biosynthesis is carried out on ribosomes. [Pg.582]

Fatty acid transport proteins (FATPs) are an evolutionary conserved family of integral membrane proteins found at the plasma membrane and on internal membranes. FATPs facilitate the unidirectional uptake and/ or intracellular activation of unesterified long-chain and very long-chain fatty acids (LCFAs) into a variety of lipid-metabolizing cells and tissues. [Pg.494]

Calcium levels in the myofibrillar space are usually low, to prevent contraction. The calcium ions are stored in an internal membrane system called the sarcoplasmic... [Pg.204]

The inner liner forms the vital internal membrane which holds the inflation medium at an elevated pressure within the structure of the tire. In early days the liner was a separate tube of natural or butyl, or more particularly, XIIR compound as an integral part of the tire structure. Adhesion levels of butyl compounds can be critically low requiring an insulating or barrier layer of an NR compound to act as an interface between the liner and the casing. [Pg.451]

Veillette A, Bookman MA, Horak EM, Samelson LE, Bolen JB. Signal transduction through the CD4 receptor involves the activation of the internal membrane tyrosine-protein kinase p561ck. Nature 1989 338(6212) 257—259. [Pg.285]

This process occurs in the mitochondria, organelles present in the cells of all multicellular organisms (see Figs 6.8 and 6.26). Mitochondria have two membranes. The invaginations of the internal membrane into the inner space of the organelle (matrix space) are termed crests (from the Latin, cristae). [Pg.475]

P. Mitchell (Nobel Prize for Chemistry, 1978) explained these facts by his chemiosmotic theory. This theory is based on the ordering of successive oxidation processes into reaction sequences called loops. Each loop consists of two basic processes, one of which is oriented in the direction away from the matrix surface of the internal membrane into the intracristal space and connected with the transfer of electrons together with protons. The second process is oriented in the opposite direction and is connected with the transfer of electrons alone. Figure 6.27 depicts the first Mitchell loop, whose first step involves reduction of NAD+ (the oxidized form of nicotinamide adenosine dinucleotide) by the carbonaceous substrate, SH2. In this process, two electrons and two protons are transferred from the matrix space. The protons are accumulated in the intracristal space, while electrons are transferred in the opposite direction by the reduction of the oxidized form of the Fe-S protein. This reduces a further component of the electron transport chain on the matrix side of the membrane and the process is repeated. The final process is the reduction of molecular oxygen with the reduced form of cytochrome oxidase. It would appear that this reaction sequence includes not only loops but also a proton pump, i.e. an enzymatic system that can employ the energy of the redox step in the electron transfer chain for translocation of protons from the matrix space into the intracristal space. [Pg.477]

The vertebrate retina contains two classes of light-sensitive receptor cells called rods and cones. The rod is an elongated cylindrical cell containing several hundred thylakoids which support the visual pigment. The pigment system in the rod is confined to internal membranes situated close to the outer membrane of the cell. In the other type of visual receptor, the cone, the pigment is situated in the external membrane itself. In the cone the external... [Pg.288]

III. Endocytosis Invagination of the plasma membrane forming an internalized membrane vesicle. [Pg.237]

Uittenbogaard, A, Everson, WV, Matveev, SV, and Smart, EJ, 2002. Cholesteryl ester is transported from caveolae to internal membranes as part of a caveolin-annexin II lipid-protein complex. J Biol Chem 277,4925—4-931. [Pg.352]

In plants, the photosynthesis reaction takes place in specialized organelles termed chloroplasts. The chloroplasts are bounded in a two-membrane envelope with an additional third internal membrane called thylakoid membrane. This thylakoid membrane is a highly folded structure, which encloses a distinct compartment called thylakoid lumen. The chlorophyll found in chloroplasts is bound to the protein in the thylakoid membrane. The major photosensitive molecules in plants are the chlorophylls chlorophyll a and chlorophyll b. They are coupled through electron transfer chains to other molecules that act as electron carriers. Structures of chlorophyll a, chlorophyll b, and pheophytin a are shown in Figure 7.9. [Pg.257]

Eukaryotic cells have evolved a complex, intracellular membrane organization. This organization is partially achieved by compartmentalization of cellular processes within specialized membrane-bounded organelles. Each organelle has a unique protein and lipid composition. This internal membrane system allows cells to perform two essential functions to sort and deliver fully processed membrane proteins, lipids and carbohydrates to specific intracellular compartments, the plasma membrane and the cell exterior, and to uptake macromolecules from the cell exterior (reviewed in [1,2]). Both processes are highly developed in cells of the nervous system, playing critical roles in the function and even survival of neurons and glia. [Pg.139]

Melanin from natural sources falls into two general classes. The first component is pheomelanin (I), which has a yellow-to-reddish brown colour, and is found in red feathers and red hair. The other component is eumelanin (which has two principal components, II and III). Eumelanin is a dark brown-black compound, and is found in skin, hair, eyes, and some internal membranes, and in the feathers of birds and scales of fish. Melanin is particularly conspicuous in the black dermal melanocytes (pigment cells) of dark-skinned peoples and in dark hair and is conspicuous in the freckles, and moles of people with lighter skins. [Pg.437]

The formation of antibodies is only one mechanism by which an animal may protect itself from substances or microorganisms that are potentially harmful. A mechanical protection against infection is provided by the presence of an intact skin surface and membranes together with the secretion of mucus from many internal membrane surfaces. The acids secreted by the stomach and skin have a bactericidal effect as does the presence in many body fluids of certain enzymes, particularly lysozyme. [Pg.228]

In spite of the variety of appearances of eukaryotic cells, their intracellular structures are essentially the same. Because of their extensive internal membrane structure, however, the problem of precise protein sorting for eukaryotic cells becomes much more difficult than that for bacteria. Figure 4 schematically illustrates this situation. There are various membrane-bound compartments within the cell. Such compartments are called organelles. Besides the plasma membrane, a typical animal cell has the nucleus, the mitochondrion (which has two membranes see Fig. 6), the peroxisome, the ER, the Golgi apparatus, the lysosome, and the endosome, among others. As for the Golgi apparatus, there are more precise distinctions between the cis, medial, and trans cisternae, and the TGN trans Golgi network) (see Fig. 8). In typical plant cells, the chloroplast (which has three membranes see Fig. 7) and the cell wall are added, and the lysosome is replaced with the vacuole. [Pg.302]

Figure 8 Ubiquitin and endocytosis. Receptors on the plasma membrane undergo monoubiquitination as a result of ligand (e.g., neurotransmitter). Ubiquitinated receptors bind to proteins called epsins, which in turn interact with adaptor proteins (adaptin) bound to clathrin-coated pits. Ubiquitination also functions to sort the internalized membrane protein into early endosomes, which directs them to degradation by lysosome through the multivesicular body. If ubiquitin from the endocytosed receptors is removed by an UBP, the receptor recycles back to the membrane. Proteasome inhibitors block endocytotic degradation of some proteins such as glutamate receptor subunits indicating a possible role for the proteasome. Figure 8 Ubiquitin and endocytosis. Receptors on the plasma membrane undergo monoubiquitination as a result of ligand (e.g., neurotransmitter). Ubiquitinated receptors bind to proteins called epsins, which in turn interact with adaptor proteins (adaptin) bound to clathrin-coated pits. Ubiquitination also functions to sort the internalized membrane protein into early endosomes, which directs them to degradation by lysosome through the multivesicular body. If ubiquitin from the endocytosed receptors is removed by an UBP, the receptor recycles back to the membrane. Proteasome inhibitors block endocytotic degradation of some proteins such as glutamate receptor subunits indicating a possible role for the proteasome.
Bamford, J. K., et al. (2002). Diffraction quality crystals of PRDl, a 66-MDa dsDNA virus with an internal membrane. /. Struct. Biol. 139,103-112. [Pg.260]

In severely damaged cells the cell contents were collapsed into an aggregated mass (Fig. 9). Few cellular membranes were evident except for the internal membrane system of the chloro-plasts (Fig. 9G). The crystalline arrays were distributed throughout the aggregated mass (Fig. 9C) and accumulations of electron-dense material occurred generally in association with the periphery of the aggregated mass (Fig. 9, arrows). [Pg.88]

Ciliate hydrogenosomes in Metopus and Cyclidium present internal membranes and look like mitochondria (Fenchel and Finlay 1995). In addition, these... [Pg.80]


See other pages where Internal membrane is mentioned: [Pg.350]    [Pg.355]    [Pg.26]    [Pg.28]    [Pg.225]    [Pg.380]    [Pg.380]    [Pg.168]    [Pg.381]    [Pg.476]    [Pg.284]    [Pg.158]    [Pg.116]    [Pg.536]    [Pg.221]    [Pg.18]    [Pg.19]    [Pg.246]    [Pg.91]    [Pg.224]    [Pg.413]    [Pg.302]    [Pg.79]    [Pg.88]    [Pg.89]    [Pg.231]    [Pg.235]    [Pg.236]   


SEARCH



Bilayer internal dynamics order parameters, membrane thickness, sterols

Eukaryotes internal membranes

Immune system internal mucous membranes

Internal limiting membrane

Internal membrane humidification

Internal membrane potentials

Internalization and Membrane Translocation

Membranes internal parts

Membranes internal water activity

© 2024 chempedia.info