Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Trichloroethylene, addition

Most of the ethylene dichloride produced is utilized for the manufacture of vinyl chloride, which may be obtained from it by pyrolysis or the action of caustic soda. Large quantities are also used in anti-knock additives for gasoline. As a solvent It has been displaced by trichloroethylene and tetrachloroelhyJene. U.S. production 1978 4-75 megatonnes. [Pg.134]

Chloroacetyl chloride is manufactured by reaction of chloroacetic acid with chlorinating agents such as phosphoms oxychloride, phosphoms trichloride, sulfuryl chloride, or phosgene (42—44). Various catalysts have been used to promote the reaction. Chloroacetyl chloride is also produced by chlorination of acetyl chloride (45—47), the oxidation of 1,1-dichloroethene (48,49), and the addition of chlorine to ketene (50,51). Dichloroacetyl and trichloroacetyl chloride are produced by oxidation of trichloroethylene or tetrachloroethylene, respectively. [Pg.89]

Halogenation and Hydrohalogenation. Halogens add to the triple bond of acetylene. FeCl catalyzes the addition of CI2 to acetylene to form 1,1,2,2-tetrachloroethane which is an intermediate in the production of the industrial solvents 1,2-dichloroethylene, trichloroethylene, and perchloroethylene (see Chlorocarbons and chlorohydrocarbons). Acetylene can be chlorinated to 1,2-dichloroethylene directiy using FeCl as a catalyst... [Pg.374]

Unreacted EDC recovered from the pyrolysis product stream contains a variety of cracking by-products. A number of these, eg, trichloroethylene, chloroprene, and benzene, are not easily removed by simple distillation and require additional treatment (78). Chloroprene can build up in the light ends... [Pg.418]

Dehydrochlorination of 1,1,2-trichloroethane [25323-89-1] produces vinyHdene chloride (1,1-dichloroethylene). Addition of hydrogen chloride to vinyHdene chloride in the presence of a Lewis acid, such as ferric chloride, generates 1,1,1-trichloroethane. Thermal chlorination of 1,2-dichloroethane is one route to commercial production of trichloroethylene and tetrachloroethylene. [Pg.506]

Inhibited grades of 1,1,1-trichloroethane are used in hundreds of different industrial cleaning appHcations. 1,1,1-Trichloroethane is preferred over trichloroethylene or tetrachloroethylene because of its lower toxicity. Additional advantages of 1,1,1-trichloroethane include optimum solvency, good evaporation rate, and no fire or flash point as determined by standard test methods. Common uses include cleaning of electrical equipment, motors, electronic components and instmments, missile hardware, paint masks, photographic film, printed ckcuit boards, and various metal and certain plastic components during manufacture (see Metal surface treatments). [Pg.11]

The most important reactions of trichloroethylene are atmospheric oxidation and degradation by aluminum chloride. Atmospheric oxidation is cataly2ed by free radicals and accelerated with heat and with light, especially ultraviolet. The addition of oxygen leads to intermediates (1) and (2). [Pg.23]

Trichloroethylene was approved for use for many years as an extraction solvent for foods. In late 1977, the Eood and Dmg Administration (EDA) harmed its use as a food additive, direcdy or indirecdy, prohibiting the use in hop extraction, decaffeination of coffee, isolation of spice oleoresins, and other apphcations. The EDA also harmed the use of trichloroethylene in cosmetic and dmg products (23). [Pg.25]

Oxychlorination of G2 Chlorinated Hydrocarbons. Tetrachloroethylene and trichloroethylene can be produced by reaction of EDC with chlorine or HCl and oxygen in the presence of a catalyst. When hydrochloric acid is used, additional oxygen is requked. Product distribution is varied by controlling reactant ratios. This process is advantageous in that no by-product HCl is produced, and it can be integrated with other processes as a net HCl consumer. The reactions may be represented as follows ... [Pg.28]

Ethers, esters, amides and imidazolidines containing an epithio group are said to be effective in enhancing the antiwear and extreme pressure peiformance of lubricants. Other uses of thiiranes are as follows fuel gas odorant (2-methylthiirane), improvement of antistatic and wetting properties of fibers and films [poly(ethyleneglycol) ethers of 2-hydroxymethyl thiirane], inhibition of alkene metathesis (2-methylthiirane), stabilizers for poly(thiirane) (halogen adducts of thiiranes), enhancement of respiration of tobacco leaves (thiirane), tobacco additives to reduce nicotine and to reduce phenol levels in smoke [2-(methoxymethyl)thiirane], stabilizers for trichloroethylene and 1,1,1-trichloroethane (2-methylthiirane, 2-hydroxymethylthiirane) and stabilizers for organic compounds (0,0-dialkyldithiophosphate esters of 2-mercaptomethylthiirane). The product of the reaction of aniline with thiirane is reported to be useful in the flotation of zinc sulfide. [Pg.184]

Both these conversion processes involve the addition of electrons to the toxic substances. The trichloroethylene molecule is electrically neutral and must gain electrons in reactions that generate negatively charged chloride anions, hi addition, water or hydronium ions must supply hydrogen atoms that replace the chlorine atoms in the organic substance. The detailed reaction is complicated, but the net reaction is relatively simple CI2 C I CHCl + 3 H3 + 6 H2 C CH2 + 3 Cr + 3 H2 O... [Pg.1364]

The use of the methods for monitoring metabolites of trichloroethylene in blood and urine is, however, rather limited since the levels of TCA in urine have been found to vary widely, even among individuals with equal exposure (Vesterberg and Astrand 1976). Moreover, exposure to other chlorinated hydrocarbons such as tetrachloroethane, tetrachloroethylene, and 1,1,1-trichloroethane would also be reflected in an increase in urinary excretion of TCA. In addition, there may be sex differences regarding the excretion of trichloroethylene metabolites in urine since one experiment shows that men secrete more trichloroethanol than women (Inoue et al. 1989). The use of the level of trichloroethylene adduction to blood proteins as a quantitative measure of exposure is also possible, although obtaining accurate results may be complicated by the fact that several metabolites of trichloroethylene may also form adducts (Stevens et al. 1992). [Pg.168]

Differences among individuals can partially explain the differences in the before workshift and end of workshift levels of trichloroethylene and its metabolites. Increased respiration rate during a workday, induced by physical workload, has been shown to affect levels of unchanged trichloroethylene more than its metabolites, while the amount of body fat influences the levels of the solvent and its metabolites in breath, blood, and urine samples before workshift exposure (Sato 1993). Additionally, liver function affects measurements of exhaled solvent at the end of workshift increased metabolism of trichloroethylene will tend to decrease the amount exhaled after a workshift. Increased renal function would affect levels of TCA and trichloroethanol in blood before a workshift in the same way, but it probably would not affect urine values between the begiiming and the end of the workshift because of the slow excretion rate of TCA. [Pg.169]

Animal studies indicate that trichloroethylene can sensitize the heart to epinephrine-induced arrhythmias. Other chemicals can affect these epinephrine-induced cardiac arrhythmias in animals exposed to trichloroethylene. Phenobarbital treatment, which increases the metabolism of trichloroethylene, has been shown to reduce the trichloroethylene-epinephrine-induced arrhythmias in rabbits (White and Carlson 1979), whereas high concentrations of ethanol, which inhibits trichloroethylene metabolism, have been found to potentiate trichloroethylene-epinephrine-induced arrhythmias in rabbits (White and Carlson 1981). These results indicate that trichloroethylene itself and not a metabolite is responsible for the epinephrine-induced arrhythmias. In addition, caffeine has also been found to increase the incidence of epinephrine-induced arrhythmias in rabbits exposed to trichloroethylene (White and Carlson 1982). [Pg.172]

Trichloroethylene may occur in drinking water along with other chlorinated hydrocarbons, so effects of these chemicals in combination are of interest to public health. Hepatotoxicity, as measured by plasma enzyme activity, was increased synergistically in rats by oral administration of carbon tetrachloride combined with trichloroethylene (Borzelleca et al. 1990). In addition, synergistic effects were implicated in a 3-day study in... [Pg.172]

The mechanism of action of trichloroethylene in the body is not well understood, and there are no proven methods of interfering with the mechanism of action for toxic effects. Based on the limited understanding of the mechanisms of action, methods of interference can be suggested. These methods require additional research before they can be put into use. [Pg.177]

Additional animal studies of trichloroethylene following intermediate-duration oral exposure are necessary to further define dose-response relationships. Because developmental neurotoxicity appears to be a sensitive end point, a focus on this end point would be useful. Animals studies following intermediate-duration dermal exposure are necessary. These studies would indicate whether targets following dermal exposure differ compared to inhalation and oral exposure. [Pg.183]

Beliles et al. 1980 Land et al. 1981). Studies for oral exposure indicate no adverse reproductive effects (NTP 1985, 1986). More research on the reproductive effects of inhalation exposure to trichloroethylene, especially effects on miscarriage in humans is needed. Additional animal studies via the inhalation and dermal routes are needed to further characterize reproductive effects. [Pg.186]

Further monitoring for birth defects in humans exposed to trichloroethylene are needed, especially in populations in which exposure concentrations could be determined. Additional studies in animals that develop dose-response relationships for particular defects and trichloroethylene exposure, as well as exposure to metabolites of trichloroethylene, are needed. [Pg.187]

A limited study in animals also presents evidence for increased susceptibility to Streptococcus zooepidomicus (Aran d et al. 1986). Immune system effects observed in mice exposed orally to trichloroethylene included inhibition of cell-mediated immunity, delayed type hypersensitivity, and inhibition of antibody-mediated immunity (Sanders et al. 1982). Female mice appeared to be more sensitive than male mice. A study in which a susceptible strain of mice was treated with intraperitoneal injections of trichloroethylene suggests that trichloroethylene can accelerate the autoimmune response (Khan et al. 1995). The immune system may be a sensitive end point for toxic effects from low-level exposure to trichloroethylene however, no firm conclusions can be drawn from the available information. Additional human and animal studies are needed to better characterize this end point and determine the potential for immunological effects for people exposed to trichloroethylene at hazardous waste sites. [Pg.187]


See other pages where Trichloroethylene, addition is mentioned: [Pg.32]    [Pg.38]    [Pg.443]    [Pg.262]    [Pg.29]    [Pg.390]    [Pg.258]    [Pg.1309]    [Pg.57]    [Pg.60]    [Pg.104]    [Pg.106]    [Pg.119]    [Pg.122]    [Pg.129]    [Pg.133]    [Pg.135]    [Pg.136]    [Pg.138]    [Pg.154]    [Pg.159]    [Pg.159]    [Pg.165]    [Pg.173]    [Pg.180]    [Pg.181]    [Pg.184]    [Pg.185]    [Pg.189]    [Pg.190]   
See also in sourсe #XX -- [ Pg.2 , Pg.32 ]




SEARCH



Trichloroethylene

© 2024 chempedia.info