Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thin solution films

UV irradiation to a thin solution film (approximately 6 jim in depth) containing a dithiocarbamate substance with an alkyl functional group at a relatively high concentration, which is overlayered on the dithiocarbamated surface, resulted in surface alteration in terms of chemical species and physical properties. These depend on the type of fimctional group of a dithiocarbamated substance used. Figure 22 fists functional dithiocarbamated substances prepared for this purpose the functional groups include phenyl, methyl, hydroxyl, carboxyl, phosphonyl, amino. [Pg.95]

So far, mainly OM has been used to directly observe in real time the nucleation and growth of ordered polypeptide solid ellipsoidal structures in thin solution films. Detailed characterization of these ellipsoidal structures will be given in this section. In particular, more information will be presented on how these structures form at the molecular level, and about the forces that lead to formation of ellipsoidal ordered structures with an aspect ratio of about 2. It will also be explained how two different populations of ordered structures can be generated in a single film. [Pg.135]

It is conceivable that Mg corrosion under thin ( p,m) surface solution films is different from that in a bulk solution [1,2]. In particular, oxygen reduction may be an important cathodic reaction. Local alkalization in the thin solution film facilitates formation of a partially protective surface film. These considerations are of particular importance when considering realistic exposure of auto components to salt spray. Thin solution films and high solution surface area imply high availability of oxygen for the cathodic reaction. There is also the issue that the corrosion rate for Mg in intermittent salt spray is much lower than the corrosion rate in immersion tests [30] (Table 12.2). [Pg.477]

Homogeneous PPO (intrinsic viscosity 1.5 dL/g in chloroform at 25 C) membranes of different thicknesses were prepared. The TCE solution of PPO, either 0.25 or 0.5 wt.%, was pipetted into a circular aluminum ring (9 cm in diameter), which was placed on a leveled glass plate to form a thin solution film. [Pg.266]

As a point of interest, it is possible to form very thin films or membranes in water, that is, to have the water-film-water system. Thus a solution of lipid can be stretched on an underwater wire frame and, on thinning, the film goes through a succession of interference colors and may end up as a black film of 60-90 A thickness [109]. The situation is reminiscent of soap films in air (see Section XIV-9) it also represents a potentially important modeling of biological membranes. A theoretical model has been discussed by Good [110]. [Pg.552]

Corrosion protection of metals can take many fonns, one of which is passivation. As mentioned above, passivation is the fonnation of a thin protective film (most commonly oxide or hydrated oxide) on a metallic surface. Certain metals that are prone to passivation will fonn a thin oxide film that displaces the electrode potential of the metal by +0.5-2.0 V. The film severely hinders the difflision rate of metal ions from the electrode to tire solid-gas or solid-liquid interface, thus providing corrosion resistance. This decreased corrosion rate is best illustrated by anodic polarization curves, which are constructed by measuring the net current from an electrode into solution (the corrosion current) under an applied voltage. For passivable metals, the current will increase steadily with increasing voltage in the so-called active region until the passivating film fonns, at which point the current will rapidly decrease. This behaviour is characteristic of metals that are susceptible to passivation. [Pg.923]

Figure 6.15 The infrared vibrational spectrum of crotonaldehyde. The parts marked (a), (b) and (c) refer to a 10 per cent (by volume) solution in CCI4, a 1 per cent solution in CCI4, and a thin liquid film, respectively. [Reproduced, with permission, from Bowles, A. J., George, W. O. and Maddams, W. F J. Chem. Soc. (B), 810, 1969]... Figure 6.15 The infrared vibrational spectrum of crotonaldehyde. The parts marked (a), (b) and (c) refer to a 10 per cent (by volume) solution in CCI4, a 1 per cent solution in CCI4, and a thin liquid film, respectively. [Reproduced, with permission, from Bowles, A. J., George, W. O. and Maddams, W. F J. Chem. Soc. (B), 810, 1969]...
Fig. 15. Schematic of the interfacial polymerization process. The microporous film is first impregnated with an aqueous amine solution. The film is then treated with a multivalent cross-linking agent dissolved in a water-immiscible organic fluid, such as hexane or Freon-113. An extremely thin polymer film... Fig. 15. Schematic of the interfacial polymerization process. The microporous film is first impregnated with an aqueous amine solution. The film is then treated with a multivalent cross-linking agent dissolved in a water-immiscible organic fluid, such as hexane or Freon-113. An extremely thin polymer film...
Most solution-cast composite membranes are prepared by a technique pioneered at UOP (35). In this technique, a polymer solution is cast directly onto the microporous support film. The support film must be clean, defect-free, and very finely microporous, to prevent penetration of the coating solution into the pores. If these conditions are met, the support can be coated with a Hquid layer 50—100 p.m thick, which after evaporation leaves a thin permselective film, 0.5—2 pm thick. This technique was used to form the Monsanto Prism gas separation membranes (6) and at Membrane Technology and Research to form pervaporation and organic vapor—air separation membranes (36,37) (Fig. 16). [Pg.68]

Films or membranes of silkworm silk have been produced by air-drying aqueous solutions prepared from the concentrated salts, followed by dialysis (11,28). The films, which are water soluble, generally contain silk in the silk I conformation with a significant content of random coil. Many different treatments have been used to modify these films to decrease their water solubiUty by converting silk I to silk II in a process found usehil for enzyme entrapment (28). Silk membranes have also been cast from fibroin solutions and characterized for permeation properties. Oxygen and water vapor transmission rates were dependent on the exposure conditions to methanol to faciUtate the conversion to silk II (29). Thin monolayer films have been formed from solubilized silkworm silk using Langmuir techniques to faciUtate stmctural characterization of the protein (30). ResolubiLized silkworm cocoon silk has been spun into fibers (31), as have recombinant silkworm silks (32). [Pg.78]

The enzyme can be immobilized on the electrode by several techniques (53). The simplest method, first used in 1962, is to trap an enzyme solution between the electrode surface and a semipermeable membrane. Another technique is to immobilize the enzyme in a polymer gel such as polyacrylamide which is coated on the electrode surface. Very thin-membrane films can be obtained by electropolymerization techniques (49,54,55) using polypyrrole, polyindole, or polyphenylenediamine films, among others. These thin films (qv) offer the advantage of improved diffusion of substrate and product that... [Pg.102]

Aqueous environments will range from very thin condensed films of moisture to bulk solutions, and will include natural environments such as the atmosphere, natural waters, soils, body fluids, etc. as well as chemicals and food products. However, since environments are dealt with fully in Chapter 2, this discussion will be confined to simple chemical solutions, whose behaviour can be more readily interpreted in terms of fundamental physicochemical principles, and additional factors will have to be considered in interpreting the behaviour of metals in more complex environments. For example, iron will corrode rapidly in oxygenated water, but only very slowly when oxygen is absent however, in an anaerobic water containing sulphate-reducing bacteria, rapid corrosion occurs, and the mechanism of the process clearly involves the specific action of the bacteria see Section 2.6). [Pg.55]

However, in this section emphasis is placed upon damp and wet atmospheric corrosion which are characterised by the presence of a thin, invisible film of electrolyte solution on the metal surface (damp type) or by visible deposits of dew, rain, sea-spray, etc. (wet type). In these categories may be placed the rusting of iron and steel (both types involved), white rusting of zinc (wet type) and the formation of patinae on copper and its alloys (both types). [Pg.336]

Kaesche considers that proton reduction may also play a role in polluted environments where the pH of the electrolyte is likely to be low. This would be particularly likely in the case of iron if the Schikorr mechanism, involving the presence of sulphuric acid, did in fact operate. However, Russian work" " has shown that oxygen depolarisation is many times more efficient in thin moisture films than in bulk solutions and therefore proton reduction may not be important in affecting corrosion rates. [Pg.344]

If oxidising salts are present in neutral solutions they may reduce corrosion of the iron by the establishment of thin protective films on the metal surface. Their effectiveness is considerably diminished if much chloride ion is also present in solution. [Pg.595]

Since the corrosion resistance of the high-silicon alloys depends upon the permanence and impermeability of a thin silica film on the surface of the metal, it is obvious that any reagent which can damage the film will cause accelerated corrosion of the metal. For this reason all solutions containing hydrofluoric acid must be regarded as incompatible with the alloys. [Pg.626]

The factors leading to the high resistance of the noble metals to chemical attack, i.e. their thermodynamic stability over a wide range of conditions and the possibility of the formation of very thin protective films under oxidising conditions, have already been mentioned. A factor tending to reduce corrosion resistance in aqueous solutions is the tendency of these metals to form complexes with some anions. [Pg.926]


See other pages where Thin solution films is mentioned: [Pg.106]    [Pg.280]    [Pg.155]    [Pg.216]    [Pg.5]    [Pg.242]    [Pg.563]    [Pg.146]    [Pg.141]    [Pg.477]    [Pg.106]    [Pg.280]    [Pg.155]    [Pg.216]    [Pg.5]    [Pg.242]    [Pg.563]    [Pg.146]    [Pg.141]    [Pg.477]    [Pg.272]    [Pg.943]    [Pg.1948]    [Pg.509]    [Pg.547]    [Pg.207]    [Pg.315]    [Pg.70]    [Pg.426]    [Pg.68]    [Pg.404]    [Pg.388]    [Pg.259]    [Pg.64]    [Pg.74]    [Pg.224]    [Pg.335]    [Pg.558]    [Pg.56]    [Pg.22]    [Pg.34]    [Pg.99]   
See also in sourсe #XX -- [ Pg.477 ]




SEARCH



© 2024 chempedia.info