Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thin solar cell

Thin solar cells are therefore much more stable than thick ones. On the other hand the initial efficiency of the thicker cells is larger because more of the solar spectrum is absorbed. The optimum design is a compromise between these two effects and the typical thickness used is about 0.5 pm. Tandem or triple cells are more efficient at absorbing over a wide spectral range because each cell is designed to cover a... [Pg.390]

The absorption coefficient of organic materials is much higher in comparison to silicon so that only about 100 nm are necessary to absorb between 60 and 90%, if a reflecting backside is used. The high absorption coefficient opens the possibility for the production of very thin solar cells... [Pg.47]

Brendel R, Artmann H, Oelting S, Frey W, Werner JH, Queisser HJ (1998b) Monocrystalline Si waffles for thin solar cells fabricated by the novel perforated-silicon process. Appl Phys A Mater... [Pg.247]

Ott N, Nerding M, Mueller G, Brendel R, Strunk HP (2004) Evolution of the microstructure during annealing of porous silicon multilayers. J App Phys 95(2) 497-503 Reuter M, Brendle W, Tobail O, Werner JH (2009) 50 pm thin solar cells with 17.0 % efficiency. [Pg.843]

Gallium and Cu/Ga alloys. The electrodeposition of galhum and copper-gallium alloys was checked to prepare semiconductors for use in thin solar cells. In this sense, Shivagan et al. reported die eleclrodeposition of (Cu-In-5Ga)-Se in the eutectic mixture ChCl/Urea. Gallium can be also deposited over a Mo electrode in a reversible process, as recently reported by Dale and co-workers. ... [Pg.728]

There ate three basic technology options for making solar cells with do2ens of variations on each. These approaches ate conveniently grouped as follows thick (- 300 fiTo) crystalline materials, concentrator cells, and thin (- 1 fiva) semiconductor films. [Pg.470]

Copper Sulfide—Cadmium Sulfide. This thin-film solar cell was used in early aerospace experiments dating back to 1955. The Cu S band gap is ca 1.2 eV. Various methods of fabricating thin-film solar cells from Cu S/CdS materials exist. The most common method is based on a simple process of serially overcoating a metal substrate, eg, copper (16). The substrate first is coated with zinc which serves as an ohmic contact between the copper and a 30-p.m thick, vapor-deposited layer of polycrystaUine CdS. A layer is then formed on the CdS base by dipping the unit into hot cuprous chloride, followed by heat-treating it in air. A heterojunction then exists between the CdS and Cu S layers. [Pg.472]

Small-area thin-film CdTe solar cells have been fabricated with sunlight-to-electricity conversion efficiencies near 16%, comparable to crystalline siUcon solar cells in large-scale manufacturing. Large-area monolithic integrated CdTe modules have been fabricated with efficiencies of ca 10%, comparable to crystalline siUcon modules commercially available. [Pg.472]

In most cases, CVD reactions are activated thermally, but in some cases, notably in exothermic chemical transport reactions, the substrate temperature is held below that of the feed material to obtain deposition. Other means of activation are available (7), eg, deposition at lower substrate temperatures is obtained by electric-discharge plasma activation. In some cases, unique materials are produced by plasma-assisted CVD (PACVD), such as amorphous siHcon from silane where 10—35 mol % hydrogen remains bonded in the soHd deposit. Except for the problem of large amounts of energy consumption in its formation, this material is of interest for thin-film solar cells. Passivating films of Si02 or Si02 Si N deposited by PACVD are of interest in the semiconductor industry (see Semiconductors). [Pg.44]

Fig. 4. Some electronic device applications using amorphous silicon (a) solar cell, (b) thin-fiLm transistor, (c) image sensor, and (d) nuclear particle detector. Fig. 4. Some electronic device applications using amorphous silicon (a) solar cell, (b) thin-fiLm transistor, (c) image sensor, and (d) nuclear particle detector.
The chemical and electronic properties of elements at the interfaces between very thin films and bulk substrates are important in several technological areas, particularly microelectronics, sensors, catalysis, metal protection, and solar cells. To study conditions at an interface, depth profiling by ion bombardment is inadvisable, because both composition and chemical state can be altered by interaction with energetic positive ions. The normal procedure is, therefore, to start with a clean or other well-characterized substrate and deposit the thin film on to it slowly at a chosen temperature while XPS is used to monitor the composition and chemical state by recording selected characteristic spectra. The procedure continues until no further spectral changes occur, as a function of film thickness, of time elapsed since deposition, or of changes in substrate temperature. [Pg.30]

Yet another alternative is the thin-film solar cell. This cannot use silicon, because the transmission of solar radiation through silicon is high enough to require relatively thick silicon layers. One current favourite is the Cu(Ga, InjSci thin-film solar cell, with an efficiency up to 17% in small experimental cells. This material has a very high light absorption and the total thickness of the active layer (on a glass substrate) is only 2 pm. [Pg.270]

A photovoltaic cell (often called a solar cell) consists of layers of semiconductor materials with different electronic properties. In most of today s solar cells the semiconductor is silicon, an abundant element in the earth s crust. By doping (i.e., chemically introducing impurity elements) most of the silicon with boron to give it a positive or p-type electrical character, and doping a thin layer on the front of the cell with phosphorus to give it a negative or n-type character, a transition region between the two types... [Pg.1058]

Gordon, R. G, Proscia, J., Ellis, F., and Delahoy, A., Texture Tin Oxide Films Produced by Atmospheric Pressure Chemical Vapor Deposition from Tetramethyltin and Their Usefulness in Producing Light Trapping in Thin Film Amorphous Silicon Solar Cells, >/or Energy Materials, (18) 263-281 (1989)... [Pg.401]

A smaller class of type II alloys of II-VI binaries also exists, including the (CdS) ,(ZnSe)i (CdS) ,(ZnTe)i (CdSe) ,(ZnSe)i (CdS) ,(CdTe)i-. (CdSe)x(CdTe)i i , and (CdS) c(ZnS)i i systems, which transform at some critical composition from the W to the ZB structure. Importantly, the transition temperatures are usually well below those required to attain a thermodynamically stable wurtzite form for the binary constituents (e.g., 700-800 °C for pure CdS and > 1,020 "C for pure ZnS). The type 11 pseudobinary CdxZni jcSe is of considerable interest in thin film form for the development of tandem solar cells as well as for the fabrication of superlattices and phosphor materials for monitors. The CdSe Tei-x alloy is one of the most investigated semiconductors in photoelectrochemical applications. [Pg.47]

Numerous ternary systems are known for II-VI structures incorporating elements from other groups of the Periodic Table. One example is the Zn-Fe-S system Zn(II) and Fe(II) may substimte each other in chalcogenide structures as both are divalent and have similar radii. The cubic polymorphs of ZnS and FeS have almost identical lattice constant a = 5.3 A) and form solid solutions in the entire range of composition. The optical band gap of these alloys varies (rather anomalously) within the limits of the ZnS (3.6 eV) and FeS (0.95 eV) values. The properties of Zn Fei-xS are well suited for thin film heterojunction-based solar cells as well as for photoluminescent and electroluminescent devices. [Pg.47]

Anodization generally results in the formation of films with limited thickness, uncertain composition, defects, and small crystallite size. Thus, the barrier nature of the n-type semiconducting CdS film obtained in the previous manner makes it too thin to form the basis of Cu2S/CdS or CdTe/CdS solar cells by the normal dipping process. Heterojunction cells of low efficiency have, however, been made by anodization followed by vacuum deposition of the added layer (CU2S). [Pg.91]

It should be stressed that the key point in the recent success of ZnS application in thin film solar cells is the use of chemical rather than electrochemical deposition (CBD), which is successfully applied also for obtaining Cdi- Zn S films. Note though that smdies on the chemical growth of ZnS are limited compared to CdS, and the level of understanding of the deposition mechanism is inferior. [Pg.103]

Electrodeposition of copper indium disulfide (CulnS2) has been reported [180-182], In a typical instance, single-phase polycrystalline CuInS2 thin films composed of 1-3 fim sized crystallites were grown on Ti by sulfurization of Cu-ln precursors prepared by sequentially electrodeposited Cu and In layers [183]. In this work, solar cells were fabricated by electrodepositing ZnSe on CuInS2. Cyclic... [Pg.118]

Iron sulfide as pyrite (FeS2) has been shown to be a promising photoactive material for photoelectrochemical and photovoltaic solar cells. Whereas a variety of methods have been employed for the preparation of thin films of this material, including CVT, MOCVD, spray-pyrolysis, and sulfidation of either iron oxide or iron, the direct efectrodeposition of FeS2 thin films has proven to be problematic. [Pg.120]

The optical properties of electrodeposited, polycrystalline CdTe have been found to be similar to those of single-crystal CdTe [257]. In 1982, Fulop et al. [258] reported the development of metal junction solar cells of high efficiency using thin film (4 p,m) n-type CdTe as absorber, electrodeposited from a typical acidic aqueous solution on metallic substrate (Cu, steel, Ni) and annealed in air at 300 °C. The cells were constructed using a Schottky barrier rectifying junction at the front surface (vacuum-deposited Au, Ni) and a (electrodeposited) Cd ohmic contact at the back. Passivation of the top surface (treatment with KOH and hydrazine) was seen to improve the photovoltaic properties of the rectifying junction. The best fabricated cell comprised an efficiency of 8.6% (AMI), open-circuit voltage of 0.723 V, short-circuit current of 18.7 mA cm, and a fill factor of 0.64. [Pg.137]

Aqueous cathodic electrodeposition has been shown to offer a low-cost route for the fabrication of large surface n-CdS/p-CdTe solar cells. In a typical procedure, CdTe films, 1-2 xm thick, are electrodeposited from common acidic tellurite bath over a thin window layer of a CdS-coated substrate under potential-controlled conditions. The as-deposited CdTe films are stoichiometric, exhibit strong preferential (111) orientation, and have n-type conductivity (doping density typically... [Pg.137]


See other pages where Thin solar cell is mentioned: [Pg.315]    [Pg.247]    [Pg.300]    [Pg.136]    [Pg.315]    [Pg.247]    [Pg.300]    [Pg.136]    [Pg.986]    [Pg.392]    [Pg.470]    [Pg.360]    [Pg.362]    [Pg.363]    [Pg.528]    [Pg.21]    [Pg.525]    [Pg.396]    [Pg.433]    [Pg.269]    [Pg.291]    [Pg.62]    [Pg.385]    [Pg.27]    [Pg.43]    [Pg.45]    [Pg.46]    [Pg.94]    [Pg.111]    [Pg.118]    [Pg.137]   
See also in sourсe #XX -- [ Pg.728 ]




SEARCH



Characteristics Required for CVD ZnO Layers Incorporated within Thin Film Solar Cells

Design Aspects of Silicon Thin Film Solar Cells

Extremely thin absorber solar cells

Extremely thin absorber solar cells absorbers

Organic solar cells thin film

Polycrystalline thin-film solar cell

Silicon Thin Film Solar Cells

Solar cells thin-film

Thin cells

Thin film solar cells, organic complexes

Thin film solar cells, organic polymers

Thin-film photovoltaic devices, polymer solar cells

Thin-film solar cells amorphous silicon-based

Thin-film solar cells cadmium telluride-based

Thin-film solar cells environmental issues

Thin-film solar cells large scale production

Thin-film solar cells, manufacturing

Thin-layer solar cell

© 2024 chempedia.info