Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The Analytical Method

Knowledge of sulfur content in petroleum products is imperative the analytical methods are numerous and depend on both the concentration being measured and the material being analyzed. [Pg.31]

Following the movement of airborne pollutants requires a natural or artificial tracer (a species specific to the source of the airborne pollutants) that can be experimentally measured at sites distant from the source. Limitations placed on the tracer, therefore, governed the design of the experimental procedure. These limitations included cost, the need to detect small quantities of the tracer, and the absence of the tracer from other natural sources. In addition, aerosols are emitted from high-temperature combustion sources that produce an abundance of very reactive species. The tracer, therefore, had to be both thermally and chemically stable. On the basis of these criteria, rare earth isotopes, such as those of Nd, were selected as tracers. The choice of tracer, in turn, dictated the analytical method (thermal ionization mass spectrometry, or TIMS) for measuring the isotopic abundances of... [Pg.7]

Analytical methods may be divided into three groups based on the magnitude of their relative errorsd When an experimental result is within 1% of the correct result, the analytical method is highly accurate. Methods resulting in relative errors between 1% and 5% are moderately accurate, but methods of low accuracy produce relative errors greater than 5%. [Pg.39]

An error due to limitations in the analytical method used to analyze a sample. [Pg.58]

The data on the left were obtained under conditions in which random errors in sampling and the analytical method contribute to the overall variance. The data on the right were obtained in circumstances in which the sampling variance is known to be insignificant. Determine the overall variance and the contributions from sampling and the analytical method. [Pg.181]

When the analytical method s selectivity is insufficient, it may be necessary to separate the analyte from potential interferents. Such separations can take advantage of physical properties, such as size, mass or density, or chemical properties. Important examples of chemical separations include masking, distillation, and extractions. [Pg.224]

In this experiment the overall variance for the analysis of potassium hydrogen phthalate (KHP) in a mixture of KHP and sucrose is partitioned into that due to sampling and that due to the analytical method (an acid-base titration). By having individuals analyze samples with different % w/w KHP, the relationship between sampling error and concentration of analyte can be explored. [Pg.225]

An important step in developing a standard method is to determine which factors have a pronounced effect on the quality of the analytical method s result. The procedure can then be written to specify the degree to which these factors must be controlled. A procedure that, when carefully followed, produces high-quality results in different laboratories is considered rugged. The method by which the critical factors are discovered is called ruggedness testing. ... [Pg.684]

A variety of statistical methods may be used to compare three or more sets of data. The most commonly used method is an analysis of variance (ANOVA). In its simplest form, a one-way ANOVA allows the importance of a single variable, such as the identity of the analyst, to be determined. The importance of this variable is evaluated by comparing its variance with the variance explained by indeterminate sources of error inherent to the analytical method. [Pg.693]

In the United States the analytical methods approved by most states are ones developed under the auspices of the Association of Official Analytical Chemists (AOAC) (3). Penalties for analytical deviation from guaranteed analyses vary, even from state to state within the United States (4). The legally accepted analytical procedures, in general, detect the solubiUty of nitrogen and potassium in water and the solubiUty of phosphoms in a specified citrate solution. Some very slowly soluble nutrient sources, particularly of nitrogen, are included in some specialty fertilizers such as turf fertilizers. The slow solubihty extends the period of effectiveness and reduces leaching losses. In these cases, the proportion and nature of the specialty source must be detailed on the labeling. [Pg.214]

Determination of the potency of Factor VIII is also difficult. This is normally measured by the abiUty of the sample to correct the clotting time of plasma deficient in Factor VIII. A number of methods and practices have evolved for this purpose (231), but these give very different results, particularly when activation of products may also occur (232). International standards have been used, but further standardization of the analytical method and harmonization of working standards is underway (233,234) under the auspices of the ISTH and the EC. [Pg.536]

Materials characterization techniques, ie, atomic and molecular identification and analysis, ate discussed ia articles the tides of which, for the most part, are descriptive of the analytical method. For example, both iaftared (it) and near iaftared analysis (nira) are described ia Infrared and raman SPECTROSCOPY. Nucleai magaetic resoaance (nmr) and electron spia resonance (esr) are discussed ia Magnetic spin resonance. Ultraviolet (uv) and visible (vis), absorption and emission, as well as Raman spectroscopy, circular dichroism (cd), etc are discussed ia Spectroscopy (see also Chemiluminescence Electho-analytical techniques It unoassay Mass specthot thy Microscopy Microwave technology Plasma technology and X-ray technology). [Pg.393]

A sohd waste is considered hazardous if it is either a Hsted waste or a characteristic waste. Listed wastes include a Hst of specific processes that generate a waste and a Hst of discarded commercial chemical products. There are four hazardous waste characteristics ignitabiHty, corrosivity, reactivity, and toxicity. The last refers to the leachabiHty of a waste and the resultant toxicity in the groundwater using the analytical method referred to as toxicity characteristic leaching procedure (TCLP). A Hst of substances included under TCLP is shown in Table 1. [Pg.78]

Modem analytical techniques have been developed for complete characteri2ation and evaluation of a wide variety of sulfonic acids and sulfonates. The analytical methods for free sulfonic acids and sulfonate salts have been compiled (28). Titration is the most straightforward method of evaluating sulfonic acids produced on either a laboratory or an iadustrial scale (29,30). Spectroscopic methods for sulfonic acid analysis iaclude ultraviolet spectroscopy, iafrared spectroscopy, and and nmr spectroscopy (31). Chromatographic separation techniques, such as gc and gc/ms, are not used for free... [Pg.98]

Comprehensive accounts of the analytical chemistry of teUurium have been pubUshed (5,26—30). The analytical methods for the determination of teUurium are to a considerable extent influenced by the element s resemblance, in many of its properties and in its limited terrestrial abundance, to selenium. [Pg.387]

The analytical methods (81—83) for the determination of free formaldehyde in the presence of /V-methy1o1 compounds are based on a low temperature (0—5°C) titration, which involves the reaction of sodium sulfite and formaldehyde (eq. 6). [Pg.446]

The elemental composition of the fish otoliths is a potential source of the useful information to recreate environment history of the individual fish in some of the species. In-depth study of the chemical composition of the otolith center (formed eaidy in fish life) and otolith edge (formed later in fish life) ensures chronological and environmental information stored in the otoliths [1]. This infoiTnation may be achieved by X-ray electron probe microanalysis (EPMA). EPMA is the analytical method to determine the elemental composition of different otolith s parts, their sizes varying from ten up to some tens of microns. [Pg.177]

Neutron Activation Analysis (NAA) is one of the analytical methods recommended for low level Mo determination in biological materials. [Pg.193]

The analytical methods for solving the Fourier equation, in which Q and T are functions of the spatial co-ordinate and time, include a change of variables by combination, and in the more general case the use of Laplace U ansforms. [Pg.78]

An easy to use nomograph has been developed for the solubility of liquid hydrocarbons in water at ambient conditions (25°C). The accuracy of the nomograph has been checked against available solubility data. Performance of the nomograph has been compared with the predictions given by two available analytical correlations. The nomograph is much simpler to use and far more accurate than either of the analytical methods. [Pg.360]

If the critical impurities are known, then only a selected list of elements need to be examined, with some improvement in the cost effectiveness of the analysis. However, the list of elements to be included in the qualification analysis is often historical and related to the limitations of the analytical methods previously used for qualification rather than for technological reasons related to the end use of the metal. As a result, problems in application can arise for no obvious reason. The time and cost of extending the impurity list for GDMS analysis to include essentially all elements is minimal, considering the additional information gained. [Pg.621]

Since non-ideal gases do not obey the ideal gas law (i.e., PV = nRT), corrections for nonideality must be made using an equation of state such as the Van der Waals or Redlich-Kwong equations. This process involves complex analytical expressions. Another method for a nonideal gas situation is the use of the compressibility factor Z, where Z equals PV/nRT. Of the analytical methods available for calculation of Z, the most compact one is obtained from the Redlich-Kwong equation of state. The working equations are listed below ... [Pg.522]

Operational differences in the analytical methods used for determining the heating value of the volatile content. [Pg.515]

The analytical method of jet trajectory study developed by Shepelev allows the derivation of several other useful features and is worth describing. On the schematic of a nonisothermal jet supplied at some angle to the horizon (Fig. 7.25), 5 is the jet s axis, X is the horizontal axis, and Z is the vertical axis. The ordinate of the trajectory of this jet can be described as z = xtga a- Az, where Az is the jet s rise due to buoyancy forces. To evaluate Az, the elementary volume dW with a mass equal to dm dV on the jet s trajectory was considered. The buoyancy force influencing this volume can be described as dP — g(p -Pj). Vertical acceleration of the volume under the consideration is j — dP / dm — -p,)/ g T,-T / T. Vertical... [Pg.466]

Some of the analytical methods utilize highly selective and sensitive detection techniques for specific functional groups of atoms in compounds, whereas others respond in a more universal manner, i.e., to the number of carbon atoms present in the organic molecule.- ... [Pg.1297]

A second way to achieve constancy of a reactant is to make use of a buffer system. If the reaction medium is water and B is either the hydronium ion or the hydroxide ion, use of a pH buffer can hold Cb reasonably constant, provided the buffer capacity is high enough to cope with acids or bases generated in the reaction. The constancy of the pH required depends upon the sensitivity of the analytical method, the extent of reaction followed, and the accuracy desired in the rate constant determination. [Pg.24]

In Scheme Vll the reactants A and B compete for reagent R. There may be additional products the essence of the description is that the analytical method responds identically to the products of the two reactions. [Pg.64]

Continuous flow devices have undergone careful development, and mixing chambers are very efficient. Mixing is essentially complete in about 1 ms, and half-lives as short as 1 ms may be measured. An interesting advantage of the continuous flow method, less important now than earlier, is that the analytical method need not have a fast response, since the concentrations are at steady state. Of course, the slower the detection method, the greater the volumes of reactant solutions that will be consumed. In 1923 several liters of solution were required, but now reactions can be studied with 10-100 mL. [Pg.178]

Titration is the analytical method used to determine the amount of acid in a solution. A measured volume of the acid solution is titrated by slowly adding a solution of base, typically NaOH, of known concentration. As incremental amounts of NaOH are added, the pH of the solution is determined and a plot of the pH of the solution versus the amount of OH added yields a titration curve. The titration curve for acetic acid is shown in Figure 2.12. In considering the progress of this titration, keep in mind two important equilibria ... [Pg.48]

For kinetic investigations and for activity measurements, either photometric assays or - because of the higher complexity of the reactants converted by biocatalysts - HPEC methods can often be used. Here the ionic liquid itself or impurities may interfere with the analytical method. [Pg.338]

The analytic methods described above lead to (16) (2 whence... [Pg.8]


See other pages where The Analytical Method is mentioned: [Pg.30]    [Pg.1843]    [Pg.50]    [Pg.180]    [Pg.180]    [Pg.368]    [Pg.457]    [Pg.775]    [Pg.224]    [Pg.146]    [Pg.393]    [Pg.79]    [Pg.282]    [Pg.53]    [Pg.536]    [Pg.133]    [Pg.348]    [Pg.22]    [Pg.180]    [Pg.456]   


SEARCH



Analytical Methods Used by ADAS for the Analysis of Organic Manures

Analytical Methods for the Determination of Uranium

Analytical Methods for the Determination of Uranium in Drinking Water

Analytical Methods for the Determination of Uranium in Food Products

Analytical Methods for the Determination of Uranium in Urine

Analytical Methods for the Study of Nitrogen

Analytical method for the metabolites of diphenyl ether herbicides in soil

Analytical methods for the determination of hydroperoxide groups

Analytical methods used for the study of stability

Application of the Analytical Method

Comparison Among the Analytical Methods

Designing the Analytical Method

Development of the Analytical Method

Error Analysis of the Analytical Method

Essential Oils Analytical Methods to Control the Quality of Perfumes

How to Navigate the Analytical Method Maze

Inversion based on the quasi-analytical method

The Analyte

The Analytic Derivative Method

The Analytical Method of Constraint Dynamics

The Application of Thermo-analytical Methods in Environment Protection

The Solution of Stochastic Models with Analytical Methods

Validation of the analytical method

© 2024 chempedia.info