Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Texture physical

Texture Physical characteristics of a solid with respect to the size, shape, pore surface, and arrangement of its sohd parts... [Pg.913]

Chemical properties involve chemical change physical properties do not. Example of physical properties color, odor, texture, physical state, solubility, density, melting point, boiling point, freezing point. Examples of chemical change irons rusts, wood burns, and so on. [Pg.383]

We are here touching on thQ fourth basic principle bare rocks are distinguished from one another by texture, physical, and chemical properties, color, etc. In combination with the second principle, this explains why tectonic areas stand out on radiance temperature distribution maps. In theory, we should be able to trace the lines separating geological outcroppings, but the facts are otherwise. [Pg.105]

The physical structure of a surface, its area, morphology and texture and the sizes of orifices and pores are often crucial detemrinants of its properties. For example, catalytic reactions take place at surfaces. Simple... [Pg.1868]

The aroma of fmit, the taste of candy, and the texture of bread are examples of flavor perception. In each case, physical and chemical stmctures ia these foods stimulate receptors ia the nose and mouth. Impulses from these receptors are then processed iato perceptions of flavor by the brain. Attention, emotion, memory, cognition, and other brain functions combine with these perceptions to cause behavior, eg, a sense of pleasure, a memory, an idea, a fantasy, a purchase. These are psychological processes and as such have all the complexities of the human mind. Flavor characterization attempts to define what causes flavor and to determine if human response to flavor can be predicted. The ways ia which simple flavor active substances, flavorants, produce perceptions are described both ia terms of the physiology, ie, transduction, and psychophysics, ie, dose-response relationships, of flavor (1,2). Progress has been made ia understanding how perceptions of simple flavorants are processed iato hedonic behavior, ie, degree of liking, or concept formation, eg, crispy or umami (savory) (3,4). However, it is unclear how complex mixtures of flavorants are perceived or what behavior they cause. Flavor characterization involves the chemical measurement of iadividual flavorants and the use of sensory tests to determine their impact on behavior. [Pg.1]

Flavor has been defined as a memory and an experience (1). These definitions have always included as part of the explanation at least two phenomena, ie, taste and smell (2). It is suggested that in defining flavor too much emphasis is put on the olfactory (smell) and gustatory (taste) aspects (3), and that vision, hearing, and tactile senses also contribute to the total flavor impression. Flavor is viewed as a division between physical sense, eg, appearance, texture, and consistency, and chemical sense, ie, smell, taste, and feeling (4). The Society of Flavor Chemists, Inc, defines flavor as "the sum total of those characteristics of any material taken in the mouth, perceived principally by the senses of taste and smell and also the general senses of pain and tactile receptors in the mouth, as perceived by the brain" (5). [Pg.10]

Formulation Aids. Formulation aids, which include carriers, binders, fillers (qv), plasticizers (qv), and film-formers, are ingredients used in processing to impart a particular physical state or textural characteristic. Table 5 gives an overview of the formulation aids used in the food industry. [Pg.441]

Coercivity of Thin-Film Media. The coercivity ia a magnetic material is an important parameter for appHcations but it is difficult to understand its physical background. It can be varied from nearly zero to more than 2000 kA/m ia a variety of materials. For thin-film recording media, values of more than 250 kA / m have been reported. First of all the coercivity is an extrinsic parameter and is strongly iafluenced by the microstmctural properties of the layer such as crystal size and shape, composition, and texture. These properties are directly related to the preparation conditions. Material choice and chemical inborn ogeneties are responsible for the Af of a material and this is also an influencing parameter of the final In crystalline material, the crystalline anisotropy field plays an important role. It is difficult to discriminate between all these parameters and to understand the coercivity origin ia the different thin-film materials ia detail. [Pg.183]

The chemical and physical properties of limestone vary tremendously, owing to the nature and quantity of impurities present and the texture, ie, crystallinity and density. These same factors also exert a marked effect on the properties of the limes derived from the diverse stone types. In addition, calcination and hydration practices can profoundly influence the properties of lime. [Pg.166]

Plastic Sheet. Poly(methyl methacrylate) plastic sheet is manufactured in a wide variety of types, including cleat and colored transparent, cleat and colored translucent, and colored semiopaque. Various surface textures ate also produced. Additionally, grades with improved weatherabiUty (added uv absorbers), mat resistance, crazing resistance, impact resistance, and flame resistance ate available. Selected physical properties of poly(methyl methacrylate) sheet ate Hsted in Table 12 (102). [Pg.269]

Antireflection coatings are used over the silicon surface which, without the coating, reflects ca 35% of incident sunlight. A typical coating consists of a single layer of a transparent dielectric material with a refractive index of ca 2, which is between the index of siUcon and ait or cover material. Materials such as titanium dioxide, tantalum pentoxide, Ta20, or siUcon nitride, Si N, ca 0.08-p.m thick are common. The coating and a physically textured... [Pg.470]

Acoustic Wave Sensors. Another emerging physical transduction technique involves the use of acoustic waves to detect the accumulation of species in or on a chemically sensitive film. This technique originated with the use of quartz resonators excited into thickness-shear resonance to monitor vacuum deposition of metals (11). The device is operated in an oscillator configuration. Changes in resonant frequency are simply related to the areal mass density accumulated on the crystal face. These sensors, often referred to as quartz crystal microbalances (QCMs), have been coated with chemically sensitive films to produce gas and vapor detectors (12), and have been operated in solution as Hquid-phase microbalances (13). A dual QCM that has one smooth surface and one textured surface can be used to measure both the density and viscosity of many Hquids in real time (14). [Pg.391]

Promoters. Many industrial catalysts contain promoters, commonly chemical promoters. A chemical promoter is used in a small amount and influences the surface chemistry. Alkali metals are often used as chemical promoters, for example, in ammonia synthesis catalysts, ethylene oxide catalysts, and Fischer-Tropsch catalysts (55). They may be used in as Httie as parts per million quantities. The mechanisms of their action are usually not well understood. In contrast, seldom-used textural promoters, also called stmctural promoters, are used in massive amounts and affect the physical properties of the catalyst. These are used in ammonia synthesis catalysts. [Pg.173]

Crystallography is a very broad science, stretching from crystal-structure determination to crystal physics (especially the systematic study and mathematical analysis of anisotropy), crystal chemistry and the geometrical study of phase transitions in the solid state, and stretching to the prediction of crystal structures from first principles this last is very active nowadays and is entirely dependent on recent advances in the electron theory of solids. There is also a flourishing field of applied crystallography, encompassing such skills as the determination of preferred orientations, alias textures, in polycrystalline assemblies. It would be fair to say that... [Pg.71]

R. W. Smith. A kinetic Monte Carlo simulation of fiber texture formation during thin-film deposition. J Appl Physics 57 1196, 1997. [Pg.931]

The physical properties of a flaimnable solid, such as hardness, texture, waxiness, particle size, melting point, plastic flow, tiiennal conductivity, and heat capacity, impart a wide range of cliaracteristics to tiie flanmiability of solids. A solid ignites by first melting and tiien producing sufficient vapor, which in turn mixes witii air to fonn a flaiimiable composition. [Pg.206]

Easily observed physical properties of soils often are useful indexes of behavior. These index properties include texture and appearance, specific weight, moisture content, consistency, permeability, compressibility, and shearing strength [37,38]. [Pg.270]

These materials are designed to reduce water from condensation dripping on equipment, etc. They often incorporate particles of cork so that water is absorbed. They are generally thick films to provide some insulation and have a rough textured surface finish to increase the surface area and encourage water evaporation. In general, physical methods of prevention such as adequate ventilation, etc. are more effective. [Pg.133]

Because the quality and health aspects of foods cannot be measured by a single index, it necessarily follows that the subject of control methods in the canned food industry is very broad, and includes chemical, physical, organoleptic, and bacteriological tests, only the first of which is discussed here. The measurement of color, odor, optical clarity, texture, viscosity, and chemical composition has been used to evaluate canned foods, but in many cases the methods that are applicable to one product are either not applicable to another, or can be used only after considerable modification. [Pg.68]


See other pages where Texture physical is mentioned: [Pg.268]    [Pg.609]    [Pg.919]    [Pg.168]    [Pg.162]    [Pg.162]    [Pg.268]    [Pg.609]    [Pg.919]    [Pg.168]    [Pg.162]    [Pg.162]    [Pg.265]    [Pg.318]    [Pg.394]    [Pg.155]    [Pg.153]    [Pg.27]    [Pg.157]    [Pg.251]    [Pg.253]    [Pg.341]    [Pg.439]    [Pg.486]    [Pg.173]    [Pg.212]    [Pg.490]    [Pg.207]    [Pg.20]    [Pg.486]    [Pg.531]    [Pg.205]    [Pg.4]    [Pg.35]    [Pg.3]    [Pg.248]    [Pg.135]   
See also in sourсe #XX -- [ Pg.14 ]




SEARCH



© 2024 chempedia.info