Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tensile heat distortion temperatures

Film or fibers derived from low molecular weight polymer tend to embrittle on immersion ia acetone those based on higher molecular weight polymer (>0.60 dL/g) become opaque, dilated, and elastomeric. When a dilated sample is stretched and dried, it retains orientation and is crystalline, exhibiting enhanced tensile strength. The tensile heat-distortion temperature of the crystalline film is iacreased by about 20°C, and the gas permeabiUty and resistance to solvent attack is iacreased. [Pg.280]

The mechanical properties and the tensile heat distortion temperatures (softening temperatures) of cast and pressed polycarbonate films containing differing amounts of plasticizer have been measured (Table III and IV). [Pg.187]

It was also found that the tensile heat distortion temperatures of films containing only a few mole per cent of these units were considerably higher than those found for bisphenol A polycarbonate. X-ray diffraction studies made on the test samples used in the tensile heat distortion apparatus could not demonstrate an increase in crystallinity of the samples. Only a slight indication of increase of orientation was apparent. Glass transition temperatures measured by the refracto-metric method were considerably lower than the heat distortion temperatures. [Pg.190]

The softening point (tensile heat distortion temperature) is determined as described by Van der Steen (18). [Pg.191]

Tensile Heat Distortion Temperature - See Heat Deflection Temperature. [Pg.545]

ASTM D1637-61, "Test for Tensile Heat Distortion Temperature of Plastic Sheeting f Philadelphia (1970 discontinued in 1990). [Pg.931]

Tensile heat-distortion temperature n. An obsolete misnomer for deflection temperature. [Pg.957]

E2092, Standard Test Method for Distortion Temperature in Three-Point Bending by Thermomechanical Analysis D3418, Transition Temperature of Polymers by Thertnal Analysis STP23594S, The Use of Thermomechanical Analysis as a Viable Alternative for the Determination of the Tensile Heat Distortion Temperature of Polymer Films... [Pg.379]

Heat Deflection Temperature n The temperature at which a material specimen (standard bar) is deflected by a certain degree under specified load. At this temperature, a material achieves a specific modulus which is defined by the applied stress and the sample geometry. Also called heat distortion temperature, heat distortion point, heat deflection point, deflection temperature under load, DTUL, tensile heat distortion temperature, HDT. See also ISO 75. [Pg.360]

Tensile Heat-Distortion Temperature n An obsolete misnomer for Deflection Temperature. [Pg.733]

Nylon-6. Nylon-6—clay nanometer composites using montmorillonite clay intercalated with 12-aminolauric acid have been produced (37,38). When mixed with S-caprolactam and polymerized at 100°C for 30 min, a nylon clay—hybrid (NCH) was produced. Transmission electron microscopy (tern) and x-ray diffraction of the NCH confirm both the intercalation and molecular level of mixing between the two phases. The benefits of such materials over ordinary nylon-6 or nonmolecularly mixed, clay-reinforced nylon-6 include increased heat distortion temperature, elastic modulus, tensile strength, and dynamic elastic modulus throughout the —150 to 250°C temperature range. [Pg.329]

Four modes of characterization are of interest chemical analyses, ie, quaUtative and quantitative analyses of all components mechanical characterization, ie, tensile and impact testing morphology of the mbber phase and rheology at a range of shear rates. Other properties measured are stress crack resistance, heat distortion temperatures, flammabiUty, creep, etc, depending on the particular appHcation (239). [Pg.525]

Random copolymers of vinyl chloride and other monomers are important commercially. Most of these materials are produced by suspension or emulsion polymerization using free-radical initiators. Important producers for vinyl chloride—vinyUdene chloride copolymers include Borden, Inc. and Dow. These copolymers are used in specialized coatings appHcations because of their enhanced solubiUty and as extender resins in plastisols where rapid fusion is required (72). Another important class of materials are the vinyl chloride—vinyl acetate copolymers. Principal producers include Borden Chemicals Plastics, B. F. Goodrich Chemical, and Union Carbide. The copolymerization of vinyl chloride with vinyl acetate yields a material with improved processabihty compared with vinyl chloride homopolymer. However, the physical and chemical properties of the copolymers are different from those of the homopolymer PVC. Generally, as the vinyl acetate content increases, the resin solubiUty in ketone and ester solvents and its susceptibiUty to chemical attack increase, the resin viscosity and heat distortion temperature decrease, and the tensile strength and flexibiUty increase slightly. [Pg.185]

The more the polysulphide the higher will be the dielectric constant and the lower the volume resistivity. There will be reduction in tensile strength and heat distortion temperature but an increase in flexibility and impact strength. [Pg.770]

Furane resin-chopped strand mat laminates have tensile strengths in excess of 200001bf/in (140 MPa), a heat distortion temperature of about 218°C and good fire resistance. [Pg.813]

TDI isomers, 210 Tear strength tests, 242-243 TEDA. See Triethylene diamine (TEDA) Telechelic oligomers, 456, 457 copolymerization of, 453-454 Telechelics, from polybutadiene, 456-459 TEM technique, 163-164 Temperature, polyamide shear modulus and, 138. See also /3-transition temperature (7)>) Brill temperature Deblocking temperatures //-transition temperature (Ty) Glass transition temperature (7) ) Heat deflection temperature (HDT) Heat distortion temperature (HDT) High-temperature entries Low-temperature entries Melting temperature (Fm) Modulu s - temperature relationship Thermal entries Tensile strength, 3, 242 TEOS. See Tetraethoxysilane (TEOS)... [Pg.602]

The data provided by Toyota Research Group of Japan on polyamide-MMT nanocomposites indicate tensile strength improvements of approximately 40%-50% at 23°C and modulus improvement of about 70% at the same temperature. Heat distortion temperature has been shown to increase from 65°C for the unmodified polyamide to 152°C for the nanoclay-modified material, all the above having been achieved with just a 5% loading of MMT clay. Similar mechanical property improvements were presented for polymethyl methacrylate-clay hybrids [27]. [Pg.34]

Nylon-6-clay nanocomposites were also prepared by melt intercalation process [49]. Mechanical and thermal testing revealed that the properties of Nylon-6-clay nanocomposites are superior to Nylon. The tensile strength, flexural strength, and notched Izod impact strength are similar for both melt intercalation and in sim polymerization methods. However, the heat distortion temperature is low (112°C) for melt intercalated Nylon-6-nanocomposite, compared to 152°C for nanocomposite prepared via in situ polymerization [33]. [Pg.667]

Regiodefects are less readily incorporated into crystallites than defect-free chain sequences. In semicrystalline polymers, increasing levels of misinsertion result in reduced crystallinity. This can affect numerous physical properties, resulting in reduced modulus, lower heat distortion temperature, and decreased tensile strength. [Pg.104]

Polyesters exhibit excellent physical properties. They have high tensile strength, high modulus, they maintain excellent tensile properties at elevated temperatures, and have a high heat distortion temperature. They are thermally stable, have low gas permeability and low electrical conductivity. For these reasons, polyesters are considered engineering polymers. [Pg.377]

Analysts. It has been our objective to determine criteria for resin, curative or formulation which would permit prediction of sucess prior to potting tests. Many tests, both chemical and physical in nature, have been executed on commercial resin systems. These have included high pressure liquid chromatography (HPLC), Fourier Transform infrared spectrometry (FTIR), gel permeation chromatography, compressive tensile tests by Instron on resin plaques in air and under various aqueous solutions and heat distortion temperature. [Pg.379]

Poly(trimethylene terephthalate). Poly(trimethylene terephthal-ate) (PIT) is a crystalline polymer that is used for fibers, films, and engineering plastics. The polymer has an outstanding tensile elastic recovery, good chemical resistance, a relative low melting temperature, and a rapid crystallization rate. It combines some of the advantages of poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT). Disadvantageous are the low heat distortion temperature, low melt viscosity, poor optical properties, and pronounced brittleness low temperatures. [Pg.224]

In addition, ASA may be blended with other polymers that themselves exhibit high heat distortion temperatures. For example, blends of poly(ether imide) and ASA exhibit an improved heat distortion temperature, improved flexural properties and tensile properties in comparison to the ASA component alone and have lower impact strengths as well (35). The statement above has been exemplified using Ultem 1000 as a poly(ether imide) resin and Geloy 1020 as ASA component. [Pg.341]


See other pages where Tensile heat distortion temperatures is mentioned: [Pg.529]    [Pg.957]    [Pg.5966]    [Pg.617]    [Pg.261]    [Pg.319]    [Pg.367]    [Pg.529]    [Pg.957]    [Pg.5966]    [Pg.617]    [Pg.261]    [Pg.319]    [Pg.367]    [Pg.490]    [Pg.526]    [Pg.186]    [Pg.110]    [Pg.462]    [Pg.499]    [Pg.628]    [Pg.285]    [Pg.524]    [Pg.541]    [Pg.36]    [Pg.138]    [Pg.144]   
See also in sourсe #XX -- [ Pg.179 ]




SEARCH



Distortion temperature

HEAT DISTORTION

HEAT DISTORTION TEMPERATURE

© 2024 chempedia.info