Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Temperature fiber-optic

K. T. V. Grattan, A. W. Palmer, and Z. Zhang, Development of a high-temperature fiber-optic thermometer probe using fluorescent decay, Rev. Sci. Instrum. 62(5), 1210-1213. [Pg.375]

Hydrogenase Activity Measured with High-Pressure, High-Temperature Fiber Optic Probe... [Pg.318]

Udd E, Lawrence C M and Nelson D V, Development of a three axis strain and temperature fiber optical grating sensor . In Proc. SPIE - Smart Structures and Materials 1997 Smart Sensing, Processing, and Instrumentation, 1997,3042,229-36. [Pg.172]

A number of areas in which plastics are used in electrical and electronic design have been covered there are many more. Examples include fiber optics, computer hardware and software, radomes for radar transmitters, sound transmitters, and appliances. Reviewed were the basic use and behavior for plastics as an insulator or as a dielectric material and applying design parameters. The effect of field intensity, frequency, environmental effects, temperature, and time were reviewed as part of the design process. Several special applications for plastics based on intrinsic properties of plastics materials were also reviewed. [Pg.229]

Svensson, L. M. and Markides, K. E., Fiber optic-based UV-absorption detector cell for high-temperature open tubular column liquid chromatography,... [Pg.96]

Possible future applications of up-converting phosphors include (i) three-dimensional displays 249-251 (ii) fiber optic amplifiers (referred to above) that operate at 1.55, 1.46, and 1.31 pm,, 2 1-255 (iii) up-conversion lasers 250 and (iv) remote sensing thermometers for high-temperature applications (utilizing the temperature dependence of optical properties of, for example, cubic Y203 Er3+).256-258... [Pg.710]

Another early fiber optic refractive "sensor" was the one for measurement of temperature and salinity variations of sea water31. The sensing region consisted of a partly uncovered light guide. It detects salinity variations in water of known temperature, and temperature variations in water of known salinity with an accuracy of +/- 2 g/L and 1 °C, respectively, at NaCl concentrations of 300 g/L. [Pg.23]

Ivanov V.N., Ivanov S.V., Kel baHkhanov B.F., Klimova L.G., Trubnikov B.N., Chemyi V.V., Elisashvili D.T., Measurement of temperature and salinity variations of water with a fiber-optical sensor, Fizika Atmosfery i Okeana 1985 21 555. [Pg.40]

Diaz-Garcia J., Costa-Femandez J.M., Bordel-Garcia N., Sanz-Medel A., Room-Temperature Phosphorescence Fiber-Optic Instrumentation for Simultaneous Multiposition Analysis of Dissolved Oxygen, Anal. Chim. Acta 2001 429 55-64. [Pg.115]

The design and implementation of a portable fiber-optic cholinesterase biosensor for the detection and determination of pesticides carbaryl and dichlorvos was presented by Andreou81. The sensing bioactive material was a three-layer sandwich. The enzyme cholinesterase was immobilized on the outer layer, consisting of hydrophilic modified polyvinylidenefluoride membrane. The membrane was in contact with an intermediate sol-gel layer that incorporated bromocresol purple, deposited on an inner disk. The sensor operated in a static mode at room temperature and the rate of the inhibited reaction served as an analytical signal. This method was successfully applied to the direct analysis of natural water samples (detection and determination of these pesticides), without sample pretreatment, and since the biosensor setup is fully portable (in a small case), it is suitable for in-field use. [Pg.371]

These results provide clear evidence for the existence of selective heating effects in MAOS involving heterogeneous mixtures. It should be stressed that the standard methods for determining the temperature in microwave-heated reactions, namely with an IR pyrometer from the outside of the reaction vessel, or with a fiber-optic probe on the inside, would only allow measurement of the average bulk temperature of the solvent, not the true reaction temperature on the surface of the solid reagent. [Pg.23]

A particularly difficult problem in microwave processing is the correct measurement of the reaction temperature during the irradiation phase. Classical temperature sensors (thermometers, thermocouples) will fail since they will couple with the electromagnetic field. Temperature measurement can be achieved either by means of an immersed temperature probe (fiber-optic or gas-balloon thermometer) or on the outer surface of the reaction vessels by means of a remote IR sensor. Due to the volumetric character of microwave heating, the surface temperature of the reaction vessel will not always reflect the actual temperature inside the vessel [7]. [Pg.31]

Temperature control Immersed fiber-optic probe (max. 300 °C) Outside IR remote sensor (optional)... [Pg.35]

Temperature measurement is achieved by means of a fiber-optic probe immersed in a single reference vessel. An available option is an IR sensor for monitoring the outside surface temperature of each vessel, mounted in the sidewall of the cavity about 5 cm above the bottom. The reaction pressure is measured by a pneumatic sensor connected to one reference vessel. Therefore, the parallel rotors should be filled with identical reaction mixtures to ensure homogeneity. [Pg.35]

CombiCHEM System (Fig. 3.9) For small-scale combinatorial chemistry applications, this barrel-type rotor is available. It can hold two 24- to 96-well microtiter plates utilizing glass vials (0.5-4 mL) at up to 4 bar at 150 °C. The plates are made of Weflon (graphite-doped Teflon) to ensure uniform heating and are sealed by an inert membrane sheet. Axial rotation of the rotor tumbles the microwell plates to admix the individual samples. Temperature measurement is achieved by means of a fiber-optic probe immersed in the center of the rotor. [Pg.39]

Temperature measurement in the rotor systems is accomplished by means of an immersed fiber-optic probe in one reference vessel or by an IR sensor on the surface of the vessels positioned at the bottom of the cavity. Pressure measurement in HP-... [Pg.41]

Cavity size (volume) Approx. 50 L Delivered power 1500 W Max. output power 1200 W Temperature control Outside IR remote sensor Immersed fiber-optic probe (optional) Pressure measurement Pneumatic pressure sensor (optional) Cooling system Air flow through cavity 100 m3 h1 External PC Optional not required as integrated key panel is standard equipment ... [Pg.41]

Turntable Vessel volume Operation volume Vessel material Max. temperature Temp, measurement 3 x 96-well plates 1 mL min. 0.1 mL glass 150 °C fiber optic 52 x 50 mL max. 30 mL glass or PFA 150 °C fiber optic 120 x 15 mL max. 10 mL glass or PFA 150 °C fiber optic... [Pg.41]

Routine temperature measurement within the Discover series is achieved by means of an IR sensor positioned beneath the cavity below the vessel. This allows accurate temperature control of the reaction even when using minimal volumes of materials (0.2 mL). The platform also accepts an optional fiber-optic temperature sensor system that addresses the need for temperature measurement where IR technology is not suitable, such as with sub-zero temperature reactions or with specialized reaction vessels. Pressure regulation is achieved by means of the IntelliVent pressure management technology. If the pressure in the vial exceeds 20 bar, the... [Pg.53]

The reactor has facilitated a diverse range of synthetic reactions at temperatures up to 200 °C and 1.4 Pa. The temperature measurements taken at the microwave zone exit indicate that the maximum temperature is attained, but they give insufficient information about thermal gradients within the coil. Accurate kinetic data for studied reactions are thus difficult to obtain. This problem has recently been avoided by using fiber optic thermometer. The advantage of continuous-flow reactor is the possibility to process large amounts of starting material in a small volume reactor (50 mL, flow rate 1 L hr1). A similar reactor, but of smaller volume (10 mL), has been described by Chen et al. [117]. [Pg.371]

Preliminary research has shown that Brillouin fiber-optic sensing systems provide a possible method to detect leaks and third-party intrusion on a pipeline over distances of 25 km or more. Their intrinsic response to both temperature and mechanical strain allows for the separation of these parameters and the detection of anomalies in the scan profiles. In addition, the same sensor could be integrated into the pipeline system to detect possible ground movement relative to fixed reference points. Limited test results on surface loads associated with the intrusion of vehicles and people on a pipeline have demonstrated the sensitivity of the system and its ability to discriminate loads at different soil depths. [Pg.366]


See other pages where Temperature fiber-optic is mentioned: [Pg.139]    [Pg.59]    [Pg.139]    [Pg.59]    [Pg.91]    [Pg.303]    [Pg.191]    [Pg.134]    [Pg.215]    [Pg.343]    [Pg.300]    [Pg.397]    [Pg.464]    [Pg.316]    [Pg.405]    [Pg.301]    [Pg.258]    [Pg.1171]    [Pg.26]    [Pg.152]    [Pg.18]    [Pg.363]    [Pg.26]    [Pg.29]    [Pg.47]    [Pg.80]    [Pg.27]    [Pg.126]    [Pg.370]    [Pg.425]   
See also in sourсe #XX -- [ Pg.3 ]




SEARCH



Fiber Optic Sensor Devices for Temperature Measurement

Fiber Optic Temperature Measurement

Fiber optic temperature probe

Fiber-optical temperature measurements

Fiber-optical temperature sensors

Optical temperature

Temperature fiber-optic sensor spectral

Temperature immersed fiber-optic probe

Temperature sensors, fiber-optic

© 2024 chempedia.info