Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

System xylene

Other workers achieved separation of I, II, and III using as a developing system Xylene-toluene-dioxane-isopropanol-20% morpholine (1 1 3 3 2)(46). [Pg.231]

However, some remarkable exceptions have been described in the literature. When hydrolysis of the water-insoluble 2-ethyl-2-(hydroxymethyl)propane-1,3-triol phosphite ( etriol phosphite ) and triphenyl phosphite, respectively, were compared in the two-phase system /)-xylene/water, it was found that the former underwent fast hydrolysis with a rate maximum at pH 7.0 of the aqueous phase (Scheme 2.111) [145]. In contrast, P(OPh)g was rather inert over a wide pH range (3.7-10.2) within 4h. Hydrogen phosphites that were produced could be trapped and analyzed as the corresponding salts [146]. [Pg.174]

Meyer and Kruse were able to convert Rh(CO)Cl(PPh3)3 to the cationic complex Rh(dppp)2Q, upon the addition of l,3-bis-(diphenylphosphino)pro-pane (dppp). This species was successfully utilized in as little as 0.5 mol% for decarbonylation reactions of simple indolyl aldehydes in xylenes at 140 °C. Direct adaptation of these cmiditions for the deformylation of intermediate 17 was ineffective however, slight modifications led to promising results. Upon screening various combinations of catalyst loadings (5-50 mol%), solvent systems (xylenes/TFE), and rates of substrate addition, the desired product 18 was finally attained in 65% yield via slow addition of substrate 17 into a... [Pg.219]

Alexandridis P, Olsson U and Lindman B 1997 Structural polymorphism of amphiphilic copolymers Six lyotropic liquid crystalline and two solution phases in a poly(oxybutylene)-poly(oxyethylene)-water-xylene system Langmuir 23-34... [Pg.2606]

The critical factor for any method involving an approximation or an extrapolation is its range of application. Liu et al. [15] demonstrated that the approach performed well for mutations involving the creation or deletion of single atoms. The method has also been successfully applied to the prediction of the relative binding affinities of benzene, toluene and o-, p-, and m-xylene to a mutant of T4-lysozyme [16]. In both cases, however, the perturbation to the system was small. To investigate range over which the extrapolation may... [Pg.159]

Quantitative analysis. Spectroscopic analysis is widely used in the analysis of vitamin preparations, mixtures of hydrocarbons (e.y., benzene, toluene, ethylbenzene, xylenes) and other systems exhibiting characteristic electronic spectra. The extinction coefficient at 326 mp, after suitable treatment to remove other materials absorbing in this region, provides the best method for the estimation of the vitamin A content of fish oils. [Pg.1149]

The need for a continuous countercurrent process arises because the selectivity of available adsorbents in a number of commercially important separations is not high. In the -xylene system, for instance, if the Hquid around the adsorbent particles contains 1% -xylene, the Hquid in the pores contains about 2% xylene at equiHbrium. Therefore, one stage of contacting cannot provide a good separation, and multistage contacting must be provided in the same way that multiple trays are required in fractionating materials with relatively low volatiHties. [Pg.295]

Such a concept was originally used in a process developed and Hcensed by UOP under the name UOP Sorbex (59,60). Other versions of the SMB system are also used commercially (61). Toray Industries built the Aromax process for the production of -xylene (20,62,63). Illinois Water Treatment and Mitsubishi have commercialized SMB processes for the separation of fmctose from dextrose (64—66). The foUowing discussion is based on the UOP Sorbex process. [Pg.295]

Alkylated aromatics have excellent low temperature fluidity and low pour points. The viscosity indexes are lower than most mineral oils. These materials are less volatile than comparably viscous mineral oils, and more stable to high temperatures, hydrolysis, and nuclear radiation. Oxidation stabihty depends strongly on the stmcture of the alkyl groups (10). However it is difficult to incorporate inhibitors and the lubrication properties of specific stmctures maybe poor. The alkylated aromatics also are compatible with mineral oils and systems designed for mineral oils (see Benzene Toulene Xylenes and ethylbenzene). ... [Pg.264]

Catalysts used in the polymerization of C-5 diolefins and olefins, and monovinyl aromatic monomers, foUow closely with the systems used in the synthesis of aHphatic resins. Typical catalyst systems are AlCl, AIBr., AlCl —HCl—o-xylene complexes and sludges obtained from the Friedel-Crafts alkylation of benzene. Boron trifluoride and its complexes, as weU as TiCl and SnCl, have been found to result in lower yields and higher oligomer content in C-5 and aromatic modified C-5 polymerizations. [Pg.354]

Njlene Separation. -Xylene is separated from mixed xylenes and ethylbenzene by means of the Parex process (Universal Oil Products Company). A proprietary adsorbent and process cycle are employed in a simulated moving-bed system. High purity -xylene is produced. [Pg.457]

This catalyst system is used in about 70% of the -xylene oxidations, and the percentage is increasing as new plants almost invariably employ it. Process conditions are highly corrosive owing to the acetic acid and bromine, and titanium must be used in contact with some parts of the process. [Pg.487]

Another approach is the simulated moving-bed system, which has large-volume appHcations in normal-paraffin separation andpara- s.yXen.e separation. Since its introduction in 1970, the simulated moving-bed system has largely displaced crystallisation ia xylene separations. The unique feature of the system is that, although the bed is fixed, the feed point shifts to simulate a moving bed (see Adsorption,liquid separation). [Pg.86]

Use as Solvent. Toluene is more important as a solvent than either benzene or xylene. Solvent use accounts for ca 14% of the total U.S. toluene demand for chemicals. About two-thirds of the solvent use is in paints and coatings the remainder is in adhesives, inks, pharmaceuticals, and other formulated products utilizing a solvent carrier. Use of toluene as solvent in surface coatings has been declining, primarily because of various environmental and health regulations. It is being replaced by other solvents, such as esters and ketones, and by changing the product formulation to use either fully soHd systems or water-based emulsion systems. [Pg.189]

Fig. 25. Schematic diagram of a system used to separate xylene isomers (69). PC = pressure control, TC = temperature control, and FC = flow control. Fig. 25. Schematic diagram of a system used to separate xylene isomers (69). PC = pressure control, TC = temperature control, and FC = flow control.
Hquid—Hquid-phase spHt the compositions of these two feed streams He oa either side of the azeotrope. Therefore, column 1 produces pure A as a bottoms product and the azeotrope as distillate, whereas column 2 produces pure B as a bottoms product and the azeotrope as distillate. The two distillate streams are fed to the decanter along with the process feed to give an overall decanter composition partway between the azeotropic composition and the process feed composition according to the lever rule. This arrangement is weU suited to purifying water—hydrocarbon mixtures, such as a C —C q hydrocarbon, benzene, toluene, xylene, etc water—alcohol mixtures, such as butanol, pentanol, etc as weU as other immiscible systems. [Pg.193]

More Complex Mixtures. AH the sequences discussed are type I Hquid systems, ie, mixtures in which only one of the binary pairs shows Hquid—Hquid behavior. Many mixtures of commercial interest display Hquid—Hquid behavior in two of the binary pairs (type II systems), eg, secondary butyl alcohol—water—di-secondary butyl ether (SBA—water—DSBE), and water—formic acid—xylene (92). Sequences for these separations can be devised on the basis of residue curve maps. The SBA—water—DSBE separation is practiced by ARGO and is considered in detail in the Hterature (4,5,105,126). [Pg.199]

The differences in composition between water-borne and solvent-bome air-drying paints necessitate change in driers and drier combinations. Since traditional driers are dissolved in mineral spirits, xylene, or other aUphatic/aromatic solvents, they are not readily dispersed in an aqueous system. If traditional driers are used, they must be dissolved in the vehicle before neutralization, which may result in a severe viscosity increase and processing problems. [Pg.222]

FIG. 15-51 Effect of reciprocating speed on HETS, o-xylene-acetic acid-water system. Lo and Pmchazka in Lo et al., p. 377.)... [Pg.1488]

Displacement-purge forms the basis for most simulated continuous countercurrent systems (see hereafter) such as the UOP Sorbex processes. UOP has licensed close to one hundred Sorbex units for its family of processes Parex to separate p-xylene from C3 aromatics, Molex tor /i-paraffin from branched and cyclic hydrocarbons, Olex for olefins from paraffin, Sarex for fruc tose from dextrose plus polysaccharides, Cymex forp- or m-cymene from cymene isomers, and Cresex for p- or m-cresol from cresol isomers. Toray Industries Aromax process is another for the production of p-xylene [Otani, Chem. Eng., 80(9), 106-107, (1973)]. Illinois Water Treatment [Making Wave.s in Liquid Processing, Illinois Water Treatment Company, IWT Adsep System, Rockford, IL, 6(1), (1984)] and Mitsubishi [Ishikawa, Tanabe, and Usui, U.S. Patent 4,182,633 (1980)] have also commercialized displacement-purge processes for the separation of fructose from dextrose. [Pg.1544]

Column crystalhzers of the end-fed type can be used for purification of many eutectic-type systems and for aqueous as well as organic systems (McKay loc. cit.). Column ciystaUizers have been used for xylene isomer separation, but recently other separation technologies including more efficient melt ciystaUization equipment have tended to supplant the Phillips style ciystaUizer. [Pg.1995]

Albertsson (Paiiition of Cell Paiiicle.s and Macromolecules, 3d ed., Wiley, New York, 1986) has extensively used particle distribution to fractionate mixtures of biological products. In order to demonstrate the versatility of particle distribution, he has cited the example shown in Table 22-14. The feed mixture consisted of polystyrene particles, red blood cells, starch, and cellulose. Liquid-liquid particle distribution has also been studied by using mineral-matter particles (average diameter = 5.5 Im) extracted from a coal liquid as the solid in a xylene-water system [Prudich and Heniy, Am. Inst. Chem. Eng. J., 24(5), 788 (1978)]. By using surface-active agents in order to enhance the water wettability of the solid particles, recoveries of better than 95 percent of the particles to the water phase were obsei ved. All particles remained in the xylene when no surfactant was added. [Pg.2015]

Unbumed Hydrocarbons Various unburned hydrocarbon species may be emitted from hydrocarbon flames. In general, there are two classes of unburned hydrocarbons (1) small molecules that are the intermediate products of combustion (for example, formaldehyde) and (2) larger molecules that are formed by pyro-synthesis in hot, fuel-rich zones within flames, e.g., benzene, toluene, xylene, and various polycyclic aromatic hydrocarbons (PAHs). Many of these species are listed as Hazardous Air Pollutants (HAPs) in Title III of the Clean Air Act Amendment of 1990 and are therefore of particular concern. In a well-adjusted combustion system, emission or HAPs is extremely low (typically, parts per trillion to parts per billion). However, emission of certain HAPs may be of concern in poorly designed or maladjusted systems. [Pg.2383]


See other pages where System xylene is mentioned: [Pg.165]    [Pg.346]    [Pg.622]    [Pg.305]    [Pg.86]    [Pg.165]    [Pg.346]    [Pg.622]    [Pg.305]    [Pg.86]    [Pg.2419]    [Pg.2790]    [Pg.412]    [Pg.416]    [Pg.422]    [Pg.77]    [Pg.96]    [Pg.357]    [Pg.276]    [Pg.303]    [Pg.457]    [Pg.43]    [Pg.484]    [Pg.439]    [Pg.483]    [Pg.493]    [Pg.95]    [Pg.42]    [Pg.163]    [Pg.48]    [Pg.188]    [Pg.1080]    [Pg.2009]   
See also in sourсe #XX -- [ Pg.304 , Pg.305 , Pg.341 ]




SEARCH



Ethylbenzene-xylene system

Xylene-benzene-aluminum chloride system

Xylene-polypropylene system

Xylenes central nervous system

© 2024 chempedia.info