Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrophilic-lipophilic balance surfactant

Emulsifiers. Removing the remover is just as important as removing the finish. For water rinse removers, a detergent that is compatible with the remover formula must be selected. Many organic solvents used in removers are not water soluble, so emulsifiers are often added (see Emulsions). Anionic types such as alkyl aryl sulfonates or tolyl fatty acid salts are used. In other appHcations, nonionic surfactants are preferred and hydrophilic—lipophilic balance is an important consideration. [Pg.550]

In most cases, these active defoaming components are insoluble in the defoamer formulation as weU as in the foaming media, but there are cases which function by the inverted cloud-point mechanism (3). These products are soluble at low temperature and precipitate when the temperature is raised. When precipitated, these defoamer—surfactants function as defoamers when dissolved, they may act as foam stabilizers. Examples of this type are the block polymers of poly(ethylene oxide) and poly(propylene oxide) and other low HLB (hydrophilic—lipophilic balance) nonionic surfactants. [Pg.463]

These characteristics are typically classified as a hydrophile-lipophile balance (HLB value). For example, hydrophilicity may be denoted within a range of 2 to 20, with true solutions being obtained at HLB values >14 and poor dispersibility occurring at HLB values <6. Oil-in-water emulsification requires a high HLB value surfactant, while water-in-oil emulsification needs a low HLB value surfactant. [Pg.538]

Alkylphenol ethoxylates (APEOs) are a class of surfactants that have been used widely in the drilling fluid industry. The popularity of these surfactants is based on their cost-effectiveness, availability, and range of obtainable hydrophilic-lipophilic balance values [693]. Studies have shown that APEOs exhibit oestrogenic effects and can cause sterility in some male aquatic species. This may have subsequent human consequences, and such problems have led to a banning of their use in some countries and agreements to phase out their use. Alternatives to products containing APEOs are available, and in some cases they show an even better technical performance. [Pg.25]

Surfactants employed for w/o-ME formation, listed in Table 1, are more lipophilic than those employed in aqueous systems, e.g., for micelles or oil-in-water emulsions, having a hydrophilic-lipophilic balance (HLB) value of around 8-11 [4-40]. The most commonly employed surfactant for w/o-ME formation is Aerosol-OT, or AOT [sodium bis(2-ethylhexyl) sulfosuccinate], containing an anionic sulfonate headgroup and two hydrocarbon tails. Common cationic surfactants, such as cetyl trimethyl ammonium bromide (CTAB) and trioctylmethyl ammonium bromide (TOMAC), have also fulfilled this purpose however, cosurfactants (e.g., fatty alcohols, such as 1-butanol or 1-octanol) must be added for a monophasic w/o-ME (Winsor IV) system to occur. Nonionic and mixed ionic-nonionic surfactant systems have received a great deal of attention recently because they are more biocompatible and they promote less inactivation of biomolecules compared to ionic surfactants. Surfactants with two or more hydrophobic tail groups of different lengths frequently form w/o-MEs more readily than one-tailed surfactants without the requirement of cosurfactant, perhaps because of their wedge-shaped molecular structure [17,41]. [Pg.472]

Particularly useful is the physical classification of surfactants based on the hydrophile-lipophile balance (HLB) system [67,68] established by Griffin [69,70]. More than 50 years ago he introduced an empirical scale of HLB values for a variety of nonionic surfactants. Griffin s original concept defined HLB as the percentage (by weight) of the hydrophile divided by 5 to yield more manageable values ... [Pg.257]

H Schott. Solubility parameter and hydrophilic lipophilic balance of nonionic surfactants. J Pharm Sci... [Pg.285]

Ethoxylated fatty alcohols and alkylphenols were used. The products available on the market make up homologous series containing an average of between 3 and 100 ethylene-oxide groups. They thus have a wide HLB (hydrophilic/lipophilic balance) range. Besides, they are among the least expensive surfactants on the market. [Pg.276]

Hunter R., S.F., F. Kezdy, The Adjuvant Activity of Nonionic Block Polymer Surfactants I. The Role of Hydrophile-Lipophile Balance, Journal of Immunology. 127, 1244, 1981. [Pg.13]

On a more practical level, to use CLAs and CGAs in PDSE it is important to understand the influence of key parameters such as solvent type and polarity, and surfactant type (hydrophilic/lipophilic balance, HLB) and concentration, on the formulation and stability of CLAs and CGAs. These are discussed next. [Pg.672]

Bourrel M, Chambu C (1983) The Rules for Achieving High Solubilization of Brine and OU by AmphiphUic Molecules. Soc Petrol Eng J 23 327-338 Kunieda H, Shinoda K (1985) Evaluation of the hydrophile-lipophile balance (HLB) of nonionic surfactants I. Multisurfactant systems. J Colloid Interface Sci 107 107-121 Kahlweit M, Strey R, Eirman P (1986) Search for tricritical points in ternary systems Water-oil-nonionic amphiphile. J Phys Chem 90 671... [Pg.111]

Different surfactants are usually characterised by the solubility behaviour of their hydrophilic and hydrophobic molecule fraction in polar solvents, expressed by the HLB-value (hydrophilic-lipophilic-balance) of the surfactant. The HLB-value of a specific surfactant is often listed by the producer or can be easily calculated from listed increments [67]. If the water in a microemulsion contains electrolytes, the solubility of the surfactant in the water changes. It can be increased or decreased, depending on the kind of electrolyte [68,69]. The effect of electrolytes is explained by the HSAB principle (hard-soft-acid-base). For example, salts of hard acids and hard bases reduce the solubility of the surfactant in water. The solubility is increased by salts of soft acids and hard bases or by salts of hard acids and soft bases. Correspondingly, the solubility of the surfactant in water is increased by sodium alkyl sulfonates and decreased by sodium chloride or sodium sulfate. In the meantime, the physical interactions of the surfactant molecules and other components in microemulsions is well understood and the HSAB-principle was verified. The salts in water mainly influence the curvature of the surfactant film in a microemulsion. The curvature of the surfactant film can be expressed, analogous to the HLB-value, by the packing parameter Sp. The packing parameter is the ratio between the hydrophilic and lipophilic surfactant molecule part [70] ... [Pg.193]

Nonionic surfactants are often characterized in terms of their hydrophile—lipophile balance (HLB) number (see Emulsions). For simple alcohol... [Pg.245]

The temperature (or salinity) at which optimal temperature (or optimal salinity), because at that temperature (or salinity) the oil—water interfacial tension is a minimum, which is optimum for oil recovery. For historical reasons, the optimal temperature is also known as the HLB (hydrophilic—lipophilic balance) temperature (42,43) or phase inversion temperature (PIT) (44). For most systems, all three tensions are very low for Tlc < T < Tuc, and the tensions of the middle-phase microemulsion with the other two phases can be in the range 10 5—10 7 N/m. These values are about three orders of magnitude smaller than the interfacial tensions produced by nonmicroemulsion surfactant solutions near the critical micelle concentration. Indeed, it is this huge reduction of interfacial tension which makes micellar-polymer EOR and its SEAR counterpart physically possible. [Pg.151]

At low temperature, nonionic surfactants are water-soluble but at high temperatures the surfactant s solubility in water is extremely small. At some intermediate temperature, the hydrophile—lipophile balance (HLB) temperature (24) or the phase inversion temperature (PIT) (22), a third isotropic liquid phase (25), appears between the oil and the water (Fig. 11). The emulsification is done at this temperature and the emulsifier is selected in the following manner. Equal amounts of the oil and the aqueous phases with all the components of the formulation pre-added are mixed with 4% of the emulsifiers to be tested in a series of samples. For the case of an o/w emulsion, the samples are left thermostated at 55°C to separate. The emulsifiers giving separation into three layers are then used for emulsification in order to find which one gives the most stable emulsion. [Pg.201]

Griffin suggested an empirical quantitative hydrophile-lipophile balance (HLB) scale which characterizes the tendency of a surfactant to form water-in-oil or oil-in-water emulsions [544], The HLB is a direct measure of the hydrophilic character of a surfactant the... [Pg.264]

The hydrophilic-lipophilic balance (HLB) classi Lcation system was L rst introduced by GrifL n (1949) to characterize the relative afLnity of a surfactant to the aqueous and oil phase. A HLB value is an empirical numerical value in the range of 1-30. The higher the HLB value, the more hydrophilic the surfactant is and in turn, the lower the HLB value, the more lipophilic the surfactant is. As a result, surfactants with higher HLB values (>8) are favorable for formation of o/w emulsions, while surfactants with lower HLB values (3-6) are more suitable for the formation of w/o emulsions. The HLB values of the surfactants used in parenteral emulsions are listed in Table 10.2. [Pg.198]

In certain cases, cholesterol is required for vesicle formation. It is commonly accepted that the hydrophilic lipophilic balance (HLB) is a parameter that could indicate the vesicleforming potential of surfactants. For amphiphils such as sorbitan esters and alkyl ethers, low HLB values could predict vesicle formation [52,55]. However, niosomes were obtained from polysorbate 20 (HLB 16.7), a highly hydrophilic molecule, when cholesterol at an appropriate concentration was added to the amphiphil [44], In this case it could be assumed that a kind of amphiphilic complex with a lower HLB was responsible for the vesicle formation. An excellent review on the structure, characteristics, chemical composition, and mechanism of action of niosomes was published by Uchegbu and Vyas [41]. [Pg.260]

Recently, a new class of inhibitors (nonionic polymer surfactants) was identified as promising agents for drug formulations. These compounds are two- or three-block copolymers arranged in a linear ABA or AB structure. The A block is a hydrophilic polyethylene oxide) chain. The B block can be a hydrophobic lipid (in copolymers BRIJs, MYRJs, Tritons, Tweens, and Chremophor) or a poly(propylene oxide) chain (in copolymers Pluronics [BASF Corp., N.J., USA] and CRL-1606). Pluronic block copolymers with various numbers of hydrophilic EO (,n) and hydrophobic PO (in) units are characterized by distinct hydrophilic-lipophilic balance (HLB). Due to their amphiphilic character these copolymers display surfactant properties including ability to interact with hydrophobic surfaces and biological membranes. In aqueous solutions with concentrations above the CMC, these copolymers self-assemble into micelles. [Pg.605]

The other components of the carrier include surfactants and disinte-grants. Surfactants with a hydrophile-lipophile balance (HLB) value between about 10 and 25 are preferred. In some cases, the carrier is completely eliminated or added in small quantities to facilitate rapid release of the drug (Table 7.3). [Pg.219]


See other pages where Hydrophilic-lipophilic balance surfactant is mentioned: [Pg.238]    [Pg.238]    [Pg.513]    [Pg.266]    [Pg.37]    [Pg.193]    [Pg.51]    [Pg.269]    [Pg.30]    [Pg.178]    [Pg.180]    [Pg.858]    [Pg.861]    [Pg.248]    [Pg.189]    [Pg.192]    [Pg.84]    [Pg.236]    [Pg.54]    [Pg.121]    [Pg.125]    [Pg.352]    [Pg.19]    [Pg.231]    [Pg.122]    [Pg.230]    [Pg.308]    [Pg.49]   
See also in sourсe #XX -- [ Pg.308 ]

See also in sourсe #XX -- [ Pg.180 , Pg.275 , Pg.310 ]

See also in sourсe #XX -- [ Pg.180 , Pg.275 , Pg.310 ]

See also in sourсe #XX -- [ Pg.238 ]




SEARCH



Hydrophile-lipophile

Hydrophile-lipophile balance

Hydrophile-lipophile balance of surfactants

Hydrophilic balance, lipophilic

Hydrophilic-lipophilic balance anionic surfactants

Hydrophilic-lipophilic balance cationic surfactants

Hydrophilic-lipophilic balances nonionic surfactants

Hydrophilic-lipophilic balances polymeric surfactants

Hydrophilicity surfactants

Hydrophilicity-lipophilicity

Stabilising ability and hydrophile-lipophile balance of surfactants

Surfactants hydrophile-lipophile balance

Surfactants hydrophile-lipophile balance

Surfactants hydrophilic

© 2024 chempedia.info