Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surfactant catalysis

Applied Chemislry Surface chemistry and behavior of surfactants catalysis filtration/reverse osmosis membranes adhesion surface lubrication, e.g. magnetic tape encapsulation. [Pg.1021]

Surfactant catalysis. Surfactants disperse organic liquids in water and also form micelles. Menger et al. have recently examined the apphcation of surfactants to synthetic organic chemistry and have observed striking effects. No hydrolysis of a,a,a-trichlorotoluene is observed in 20% NaOH at 80° after... [Pg.70]

Sulfur dioxide, 23, 558 Sulfuric acid, 558-560 Sulfur monochloride, 470-471, 560 Sulfur tetrafluoride, 560-561 Sulfur trioxidc—Dioxane, 561 Sulfuryl chloride, 118, 298, 510, 561 Sulfutyl chlotofluoride, 24, 562 /3-Sultines, 117 Surfactant catalysis, 70... [Pg.382]

Kumar D, Seth K et al (2013) Surfactant micelles as microreactors for the synthesis of quinoxalines in water scope and limitations of surfactant catalysis. RSC Adv 3 15157-15168... [Pg.65]

The issue of water in reverse micellar cores is important because water swollen reverse micelles (reverse microemulsions) provide means for carrying almost any water-soluble component into a predominantly oil-continuous solution (see discussions of microemulsions and micellar catalysis below). In tire absence of water it appears tliat premicellar aggregates (pairs, trimers etc.) are commonly found in surfactant-in-oil solutions [47]. Critical micelle concentrations do exist (witli some exceptions). [Pg.2591]

Other solubilization and partitioning phenomena are important, both within the context of microemulsions and in the absence of added immiscible solvent. In regular micellar solutions, micelles promote the solubility of many compounds otherwise insoluble in water. The amount of chemical component solubilized in a micellar solution will, typically, be much smaller than can be accommodated in microemulsion fonnation, such as when only a few molecules per micelle are solubilized. Such limited solubilization is nevertheless quite useful. The incoriDoration of minor quantities of pyrene and related optical probes into micelles are a key to the use of fluorescence depolarization in quantifying micellar aggregation numbers and micellar microviscosities [48]. Micellar solubilization makes it possible to measure acid-base or electrochemical properties of compounds otherwise insoluble in aqueous solution. Micellar solubilization facilitates micellar catalysis (see section C2.3.10) and emulsion polymerization (see section C2.3.12). On the other hand, there are untoward effects of micellar solubilization in practical applications of surfactants. Wlren one has a multiphase... [Pg.2592]

The kinetic data are essentially always treated using the pseudophase model, regarding the micellar solution as consisting of two separate phases. The simplest case of micellar catalysis applies to unimolecTilar reactions where the catalytic effect depends on the efficiency of bindirg of the reactant to the micelle (quantified by the partition coefficient, P) and the rate constant of the reaction in the micellar pseudophase (k ) and in the aqueous phase (k ). Menger and Portnoy have developed a model, treating micelles as enzyme-like particles, that allows the evaluation of all three parameters from the dependence of the observed rate constant on the concentration of surfactant". ... [Pg.129]

Studies of micellar catalysis of himolecular reactions of uncharged substrates have not been frequent" ". Dougherty and Berg performed a detailed analysis of the kinetics of the reaction of 1-fluoro-2,4-dinitrobenzene with aniline in the presence of anionic and nonionic surfactants. Micelles induce increases in the apparent rate constant of this reaction. In contrast, the second-order rate constant for reaction in the micellar pseudophase was observed to be roughly equal to, or even lower than the rate constant in water. [Pg.131]

Inspired by the many hydrolytically-active metallo enzymes encountered in nature, extensive studies have been performed on so-called metallo micelles. These investigations usually focus on mixed micelles of a common surfactant together with a special chelating surfactant that exhibits a high affinity for transition-metal ions. These aggregates can have remarkable catalytic effects on the hydrolysis of activated carboxylic acid esters, phosphate esters and amides. In these reactions the exact role of the metal ion is not clear and may vary from one system to another. However, there are strong indications that the major function of the metal ion is the coordination of hydroxide anion in the Stem region of the micelle where it is in the proximity of the micelle-bound substrate. The first report of catalysis of a hydrolysis reaction by me tall omi cell es stems from 1978. In the years that... [Pg.138]

With the aim of catalysis of the Diels-Alder reaction of 5.1 with 5.2 by metallo micelles, preliminary studies have been performed using the surfactants 5.5a-c and 5.6 (Scheme 5.2). Unfortunately, the limited solubility of these surfactants in the pH region that allows Lewis-acid catalysis of the Diels-... [Pg.138]

In all surfactant solutions 5.2 can be expected to prefer the nonpolar micellar environment over the aqueous phase. Consequently, those surfactant/dienophile combinations where the dienophile resides primarily in the aqueous phase show inhibition. This is the case for 5.If and S.lg in C12E7 solution and for S.lg in CTAB solution. On the other hand, when diene, dienophile and copper ion simultaneously bind to the micelle, as is the case for Cu(DS)2 solutions with all three dienophiles, efficient micellar catalysis is observed. An intermediate situation exists for 5.1c in CTAB or C12E7 solutions and particularly for 5.If in CTAB solution. Now the dienophile binds to the micelle and is slid elded from the copper ions that apparently prefer the aqueous phase. Tliis results in an overall retardation, despite the possible locally increased concentration of 5.2 in the micelle. [Pg.142]

In retrospect, this study has demonstrated the limitations of two commonly accepted methods of analysing solubilisation and micellar catalysis, respectively. It has become clear that solubilisate ririg-current induced shifts need to be interpreted with due caution. These data indicate a proximity of solubilisate and parts of the surfactant and, strictly, do not specify the location within the micelle where the encounter takes place. Also the use of the pseudophase model for bimolecular reactions requires precaution. When distribution of the reactants over the micelle is not comparable, erroneous results are likely to be obtained... [Pg.153]

The current or potential iadustrial appHcations of microemulsions iaclude metal working, catalysis, advanced ceramics processiag, production of nanostmctured materials (see Nanotechnology), dyeiag, agrochemicals, cosmetics, foods, pharmaceuticals, and biotechnology (9,12—18). Environmental and human-safety aspects of surfactants have begun to receive considerable attention (19—21). [Pg.151]

The only significant use for di-j -butylphenol is a specialty nonionic surfactant produced by reaction with ethylene oxide under base catalysis. This surfactant is registered with EPA for use in emulsifying agrochemicals (see Table 3). [Pg.69]

C. Starks, Ind. Appl. Surfactants IZ, 77, 165 (1990) C. Starks, ed., Phase-Transfer Catalysis Neir Chemisty, Catalysts and Applications American Chemical Society, Washington, D.C., 1987 E. Dehmlov, Phase-Transfer Catalysis Vedag Chemie, Deerfield Beach, Fla., 1983 M. Halpem, Phase-Transfer Catalysis in Climan s Tnyclopedia of Industrial Chemisty Vol. A19, VCH V6, New York, 1991 M. Halpem, Phase-Transfer Catalysis Commun. 1, 1 (1995). Specialty Sufactants Worldwide in Specialty Chemicals SRI International, Menlo Park, Calif., 1989, pp. 81—94. [Pg.387]

The catalytic activity of surfactant micelles and the effect of the concentration of reagents in micelle catalysis are tested on hydrolysis of esters of phosphorus acids [25],... [Pg.614]

The Diels-Alder reaction of nonyl acrylate with cyclopentadiene was used to investigate the effect of homochiral surfactant 114 (Figure 4.5) on the enantioselectivity of the reaction [77]. Performing the reaction at room temperature in aqueous medium at pH 3 and in the presence of lithium chloride, a 2.2 1 mixture of endo/exo adducts was obtained with 75% yield. Only 15% of ee was observed, which compares well with the results quoted for Diels-Alder reactions in cyclodextrins [65d]. Only the endo addition was enantioselective and the R enantiomer was prevalent. This is the first reported aqueous chiral micellar catalysis of a Diels-Alder reaction. [Pg.179]

The durability of the catalytic system was investigated by employing it in five successive hydrogenations. Similar TOFs were observed due to the water solubihty of the protective agent which retains nanoparticles in aqueous phase. The comparative TEM studies show that (i) the average particle size was 2.2 0.2 nm (ii) the coimter anion of the surfactant does not allow a major influence on the size and (iii) nanoparticle suspensions have a similar size distribution after catalysis. [Pg.272]

At the present time, "interest in reversed micelles is intense for several reasons. The rates of several types of reactions in apolar solvents are strongly enhanced by certain amphiphiles, and this "micellar catalysis" has been regarded as a model for enzyme activity (. Aside from such "biomimetic" features, rate enhancement by these surfactants may be important for applications in synthetic chemistry. Lastly, the aqueous "pools" solubilized within reversed micelles may be spectrally probed to provide structural information on the otherwise elusive state of water in small clusters. [Pg.226]

The catalytic applications of Moiseev s giant cationic palladium clusters have extensively been reviewed by Finke et al. [167], In a recent review chapter we have outlined the potential of surfactant-stabilized nanocolloids in the different fields of catalysis [53]. Our three-step precursor concept for the manufacture of heterogeneous egg-shell - nanocatalysts catalysts based on surfactant-stabilized organosols or hydrosols was developed in the 1990s [173-177] and has been fully elaborated in recent time as a standard procedure for the manufacture of egg-shell - nanometal catalysts, namely for the preparation of high-performance fuel cell catalysts. For details consult the following Refs. [53,181,387]. [Pg.38]

There are different ways in which the nanoparticles prepared by ME-technique can be used in catalysis. The use of ME per se [16,17] implies the addition of extra components to the catalytic reaction mixture (hydrocarbon, water, surfactant, excess of a metal reducing agent). This leads to a considerable increase of the reaction volume, and a catal5fiic reaction may be affected by the presence of ME via the medium and solubilization effects. The complex composition of ME does not allow performing solvent-free reactions. [Pg.293]


See other pages where Surfactant catalysis is mentioned: [Pg.253]    [Pg.398]    [Pg.38]    [Pg.253]    [Pg.398]    [Pg.38]    [Pg.2593]    [Pg.2594]    [Pg.125]    [Pg.127]    [Pg.131]    [Pg.131]    [Pg.134]    [Pg.207]    [Pg.67]    [Pg.68]    [Pg.68]    [Pg.134]    [Pg.353]    [Pg.145]    [Pg.154]    [Pg.167]    [Pg.291]    [Pg.166]    [Pg.539]    [Pg.786]    [Pg.27]    [Pg.31]    [Pg.236]    [Pg.356]   
See also in sourсe #XX -- [ Pg.70 ]




SEARCH



Catalysts/catalysis surfactant-type

Lewis acid-surfactant-combined catalysis

Lewis surfactant-combined catalysis

Reaction Rates, Catalysis and Surfactants

Solubilization by Solutions of Surfactants Micellar Catalysis

Surfactants phase transfer catalysis with

© 2024 chempedia.info