Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface preparation epoxy adhesives

Rider and Amott were able to produce notable improvements in bond durability in comparison with simple abrasion pre-treatments. In some cases, the pretreatment improved joint durability to the level observed with the phosphoric acid anodizing process. The development of aluminum platelet structure in the outer film region combined with the hydrolytic stability of adhesive bonds made to the epoxy silane appear to be critical in developing the bond durability observed. XPS was particularly useful in determining the composition of fracture surfaces after failure as a function of boiling-water treatment time. A key feature of the treatment is that the adherend surface prepared in the boiling water be treated by the silane solution directly afterwards. Given the adherend is still wet before immersion in silane solution, the potential for atmospheric contamination is avoided. Rider and Amott have previously shown that such exposure is detrimental to bond durability. [Pg.427]

Direct bonding. In many high-volume production applications (i.e., the automotive and appliance industries), elaborate surface preparation of steel ad-herends is undesirable or impossible. Thus, there has been widespread interest in bonding directly to steel coil surfaces that contain various protective oils [55,56,113-116], Debski et al. proposed that epoxy adhesives, particularly those curing at high temperatures, could form suitable bonds to oily steel surfaces by two mechanisms (1) thermodynamic displacement of the oil from the steel surface, and (2) absorption of the oil into the bulk adhesives [55,56]. The relative importance of these two mechanisms depends on the polarity of the oil and the surface area/volume ratio of the adhesive (which can be affected by adherend surface roughness). [Pg.984]

Effects on lap shear strength of EB-cured epoxy adhesives from different surface preparations on aluminum and composite adherends... [Pg.1020]

A wide range of paints and other organic coatings is used for the protection of mild steel structures. Paints are used mainly for protection from atmospheric corrosion. Special chemically resistant paints have been developed for use on chemical process equipment. Chlorinated rubber paints and epoxy-based paints are used. In the application of paints and other coatings, good surface preparation is essential to ensure good adhesion of the paint film or coating. [Pg.305]

In essence, the durability of metal/adhesive joints is governed primarily by the combination of substrate, surface preparation, environmental exposure and choice of adhesive. As stated earlier, the choice of the two-part nitrile rubber modified epoxy system (Hughes Chem - PPG) was a fixed variable, meeting the requirement of initial joint strength and cure cycle and was not, at this time, examined as a reason for joint failure. Durability, as influenced by substrate, surface preparation, and environmental exposure were examined in this study using results obtained from accelerated exposure of single lap shear adhesive joints. [Pg.181]

Primer Epoxy vs. Nitrile-Modified Epoxy. The compatibility of the epoxy-polyamide primer with the nitrile-modified epoxy adhesive facsimile and the aluminum oxide surface was also evaluated by the wedge test, since earlier tests using the primer as the adhesive had failed immediately. As shown in Fig. 8, the addition of the primer directly to the prepared... [Pg.241]

Abstract—The structure of films formed by a multicomponent silane primer applied to an aluminum adherend and the interactions of this primer with an amine-cured epoxy adhesive were studied using X-ray photoelectron spectroscopy, reflection-absorption infrared spectroscopy, and attenuated total reflectance infrared spectroscopy. The failure in joints prepared from primed adherends occurred extremely close to the adherend surface in a region that contained much interpenetrated primer and epoxy. IR spectra showed evidence of oxidation in the primer. Fracture occurred in a region of interpenetrated primer and adhesive with higher than normal crosslink density. The primer films have a stratified structure that is retained even after curing of the adhesive. [Pg.493]

The outdoor durability of epoxy bonded joints is very dependent on the type of epoxy adhesive, specific formulation, nature of the surface preparation, and specific environmental conditions encountered in service. The data shown in Fig. 15.19, for a two-part room temperature cured polyamide epoxy adhesive with a variety of fillers, illustrates the differences in performance that can occur due to formulation changes. Excellent outdoor durability is provided on aluminum adherends when chromic-sulfuric acid etch or other chemical pretreatments are used. [Pg.331]

It is impossible to avoid a discussion on prebond surface preparation since it is one of the most important factors in the fabrication of a durable and consistent epoxy adhesive joint. Selection of a proper surface preparation is not an easy task, and the actual implementation of the surface treating process in production is equally daunting. [Pg.343]

Various substrate surface treatments suggested for use with a common epoxy-substrate joint and service environment combinations are discussed in this chapter. Surface preparation processes for a range of specific substrates and detailed process specifications are provided in App. F. The reader is also directed to several excellent texts that provide prebond surface treatment recipes and discuss the basics of surface preparation, the importance of contamination or weak boundary layers, and specific processes for adhesive systems other than epoxy.1,2,3... [Pg.343]

The usual approach to good bonding practice is to prepare the aluminum surface as thoroughly as possible, then wet it with the adhesive as soon afterward as practical. In any event, aluminum parts should ordinarily be bonded within 48 h after surface preparation. However, in certain applications this may not be practical, and primers are used to protect the surface between the time of treatment and the time of bonding. Primers are also applied as a low-viscosity solution which wets a metal surface more effectively than more viscous, higher-solids-content adhesives. Corrosion-resistant epoxy primers are often used to protect the etched surface during assembly operations. Primers for epoxy adhesive systems are described in Chap. 10. [Pg.350]

A number of prebonding surface preparations for bonding beryllium and its alloys with epoxy adhesives have been suggested in the literature. One procedure is to degrease the substrate with trichloroethylene, followed by immersion in the solution listed below for 5 to 10 min at 23°C. [Pg.352]

The substrate should then be washed in tap water and rinsed with distilled water. The final step in the process is an oven-dry of 10 min at 121 to 177°C.26 Several other surface preparation procedures for beryllium have been reported to have merit. Epoxy and epoxy hybrid adhesives have been found to provide high strengths on sulfuric acid-sodium dichromate etched beryllium.27... [Pg.352]

Alkyd parts are generally very rigid, and the surfaces are hard and stiff. Surface preparation for alkyd parts consists of simple solvent cleaning and mechanical abrasion. Epoxies, urethanes, cyanoacrylates, and thermosetting acrylics are commonly used as structural adhesives. [Pg.363]

Typical surface preparation calls for cleaning with acetone, MEK, or other common solvent. Once clean, the substrate is then mechanically abraded with sand, grit or vapor blast, or steel wool. The surface is again wiped clean with fresh solvent. Typical adhesives that are employed include epoxies, urethanes, and cyanoacrylates. Polysulfides, furanes, and polyester adhesives have also been suggested. [Pg.363]

The common surface preparation treatment for epoxy resins is to wipe with solvent, mechanical abrasion, and final solvent cleaning. Epoxy parts can be most easily bonded with an epoxy adhesive similar to the material being bonded. Urethanes, cyanoacrylates, and thermosetting acrylics have also been used when certain properties or processing parameters are required. [Pg.364]

To obtain a usable adhesive bond with polyolefins, the surface must be treated. A number of surface preparation methods, including flame, chemical, plasma, and primer treatments, are in use. Figure 16.4 illustrates the epoxy adhesive strength improvements that can be made by using various prebond surface treatments to change the critical surface tension of polyethylene. [Pg.372]

Epoxy and nitrile-phenolic adhesives have been used to bond polyolefin plastics after plasma surface preparation. Shear strengths in excess of 3000 psi have been reported on... [Pg.372]

Various adhesives can be used to bond polyphenylene oxide to itself or to other substrates. Parts must be prepared by sanding or by chromic acid etching at elevated temperature. Methyl alcohol is a suitable solvent for surface cleaning. The prime adhesive candidates are epoxies, modified epoxies, nitrile phenolics, and polyurethanes. Epoxy adhesive will provide tensile shear strength on abraded polyphenylene oxide substrates of 600 to 1300 psi and 1300 to 2200 psi on etched (chromic acid) substrates.71... [Pg.374]

When undertaking the job of preparing for this book, I originally intended to provide a collection of epoxy adhesive formulations that could be used for specific applications, and hopefully I have accomplished that task. However, it is also necessary to discuss surface... [Pg.551]

Methyl methacrylate (MMA) and MMA/epoxy hybrid structural adhesives provide fast, simplified joining operations with minimal surface preparation. They can be used to bond composite body panels, bumpers and exterior trim, cockpit structures, door extensions, and tail and lift gates. [Pg.16]


See other pages where Surface preparation epoxy adhesives is mentioned: [Pg.24]    [Pg.809]    [Pg.964]    [Pg.1019]    [Pg.902]    [Pg.116]    [Pg.764]    [Pg.873]    [Pg.38]    [Pg.510]    [Pg.133]    [Pg.151]    [Pg.347]    [Pg.365]    [Pg.368]    [Pg.375]    [Pg.553]    [Pg.61]    [Pg.329]    [Pg.122]    [Pg.116]    [Pg.86]    [Pg.269]    [Pg.427]    [Pg.24]    [Pg.809]    [Pg.964]   
See also in sourсe #XX -- [ Pg.102 ]




SEARCH



Adhesion epoxies

Adhesives surface adhesion

Epoxy adhesives

Surface adhesion

Surface preparation

Surface preparation adhesion

© 2024 chempedia.info