Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfur compounds catalysts

A knowledge of these compounds is important because they often have undesirable attributes, e.g., unpleasant odor, the SO2 formed by combustion, catalyst poisoning. There are a number of refining processes to eliminate sulfur compounds. [Pg.10]

Thiophene [110-02-17, C H S, and dibenzothiophene [132-65-OJ C22HgS, are models for the organic sulfur compounds found in coal, as well as in petroleum and oil shale. Cobalt—molybdenum and nickel—molybdenum catalysts ate used to promote the removal of organic sulfur (see Coal CONVERSION... [Pg.416]

Because hydrocarbon feeds for steam reforming should be free of sulfur, feed desulfurization is required ahead of the steam reformer (see Sulfur REMOVAL AND RECOVERY). As seen in Figure 1, the first desulfurization step usually consists of passing the sulfur-containing hydrocarbon feed at about 300—400°C over a Co—Mo catalyst in the presence of 2—5% H2 to convert organic sulfur compounds to H2S. As much as 25% H2 may be used if olefins... [Pg.418]

Natural gas contains both organic and inorganic sulfur compounds that must be removed to protect both the reforming and downstream methanol synthesis catalysts. Hydrodesulfurization across a cobalt or nickel molybdenum—zinc oxide fixed-bed sequence is the basis for an effective purification system. For high levels of sulfur, bulk removal in a Hquid absorption—stripping system followed by fixed-bed residual clean-up is more practical (see Sulfur REMOVAL AND RECOVERY). Chlorides and mercury may also be found in natural gas, particularly from offshore reservoirs. These poisons can be removed by activated alumina or carbon beds. [Pg.276]

Tetrahydronaphthalene is produced by the catalytic treatment of naphthalene with hydrogen. Various processes have been used, eg, vapor-phase reactions at 101.3 kPa (1 atm) as well as higher pressure Hquid-phase hydrogenation where the conditions are dependent upon the particular catalyst used. Nickel or modified nickel catalysts generally are used commercially however, they are sensitive to sulfur, and only naphthalene that has very low sulfur levels can be used. Thus many naphthalene producers purify their product to remove the thionaphthene, which is the principal sulfur compound present. Sodium treatment and catalytic hydrodesulfuri2ation processes have been used for the removal of sulfur from naphthalene the latter treatment is preferred because of the ha2ardous nature of sodium treatment. [Pg.483]

Feed Ga.s Purifica.tion. Because nickel-based reforming catalysts are quite sensitive to sulfur, halogen, and heavy metal poisons which may be found ia natural gas, a feedstock purification system is normally required. Sulfur compounds, ia both organic and inorganic forms, are the most common... [Pg.345]

Rhenium oxides have been studied as catalyst materials in oxidation reactions of sulfur dioxide to sulfur trioxide, sulfite to sulfate, and nitrite to nitrate. There has been no commercial development in this area. These compounds have also been used as catalysts for reductions, but appear not to have exceptional properties. Rhenium sulfide catalysts have been used for hydrogenations of organic compounds, including benzene and styrene, and for dehydrogenation of alcohols to give aldehydes (qv) and ketones (qv). The significant property of these catalyst systems is that they are not poisoned by sulfur compounds. [Pg.164]

Steam Reforming Processes. In the steam reforming process, light hydrocarbon feedstocks (qv), such as natural gas, Hquefied petroleum gas, and naphtha, or in some cases heavier distillate oils are purified of sulfur compounds (see Sulfurremoval and recovery). These then react with steam in the presence of a nickel-containing catalyst to produce a mixture of hydrogen, methane, and carbon oxides. Essentially total decomposition of compounds containing more than one carbon atom per molecule is obtained (see Ammonia Hydrogen Petroleum). [Pg.368]

Alternative means for removal of carbonyl sulfide for gas streams iavolve hydrogenation. For example, the Beavon process for removal of sulfur compounds remaining ia Claus unit tail gases iavolves hydrolysis and hydrogenation over cobalt molybdate catalyst resulting ia the conversion of carbonyl sulfide, carbon disulfide, and other sulfur compounds to hydrogen sulfide (25). [Pg.130]

Catalytic Oxidation. Catalytic oxidation is used only for gaseous streams because combustion reactions take place on the surface of the catalyst which otherwise would be covered by soHd material. Common catalysts are palladium [7440-05-3] and platinum [7440-06-4]. Because of the catalytic boost, operating temperatures and residence times are much lower which reduce operating costs. Catalysts in any treatment system are susceptible to poisoning (masking of or interference with the active sites). Catalysts can be poisoned or deactivated by sulfur, bismuth [7440-69-9] phosphoms [7723-14-0] arsenic, antimony, mercury, lead, zinc, tin [7440-31-5] or halogens (notably chlorine) platinum catalysts can tolerate sulfur compounds, but can be poisoned by chlorine. [Pg.168]

Hydrogenation at lower temperature and ia the presence of catalysts yields organic sulfur compounds. With a reduced nickel catalyst at 180°C, methanedithiol [6725-64-0] is formed ... [Pg.28]

Catalysts commonly lose activity in operation as a result of accumulation of materials from the reactant stream. Catalyst poisoning is a chemical phenomenon, A catalyst poison is a component such as a feed impurity that as a result of chemisorption, even in smaH amounts, causes the catalyst to lose a substantial fraction of its activity. For example, sulfur compounds in trace amounts poison metal catalysts. Arsenic and phosphoms compounds are also poisons for a number of catalysts. Sometimes the catalyst surface has such a strong affinity for a poison that it scavenges it with a high efficiency. The... [Pg.173]

Catalysis by Metal Sulfides. Metal sulfides such as M0S2, WS2, and many others catalyze numerous reactions that are catalyzed by metals (98). The metal sulfides are typically several orders of magnitude less active than the metals, but they have the unique advantage of not being poisoned by sulfur compounds. They are thus good catalysts for appHcations with sulfur-containing feeds, including many fossil fuels. [Pg.182]

The catalyst commonly used in this method is 5 wt % palladium supported on barium sulfate inhibited with quinoline—sulfur, thiourea, or thiophene to prevent reduction of the product aldehyde. A procedure is found in the Hterature (57). Suitable solvents are toluene, benzene, and xylene used under reflux conditions. Interestingly, it is now thought that Rosenmund s method (59) originally was successful because of the presence of sulfur compounds in the xylene used, since the need for an inhibitor to reduce catalyst activity was not described until three years later (60). [Pg.200]

Catalyst lifetime for contemporary ethylene oxide catalysts is 1—2 years, depending on the severity of service, ie, ethylene oxide production rate and absence of feed poisons, primarily sulfur compounds. A large percentage (>95%) of the silver in spent catalysts can be recovered and recycled the other components are usually discarded because of thek low values. [Pg.202]

Chlorination of OCT with chlorine at 90°C in the presence of L-type 2eohtes as catalyst reportedly gives a 56% yield of 2,5-dichlorotoluene (79). Pure 2,5-dichlorotoluene is also available from the Sandmeyer reaction on 2-amino-5-chlorotoluene. 3,4-Dichlorotoluene (l,2-dichloro-4-methylben2ene) is formed in up to 40% yield in the chlorination of PCT cataly2ed by metal sulfides or metal halide—sulfur compound cocatalyst systems (80). [Pg.55]

Many reactions can be carried out between potassium cyanide and organic compounds with the alkalinity of the KCN acting as a catalyst these reactions are analogous to reactions of sodium cyanide. The reactions of potassium cyanide with sulfur and sulfur compounds are also analogous to those of sodium cyanide. Potassium cyanide is reduced to potassium metal and carbon by heating it out of contact with air in the presence of powdered magnesium. Magnesium is converted to the nitride ... [Pg.385]

The precious metals possess much higher specific catalytic activity than do the base metals. In addition, base metal catalysts sinter upon exposure to the exhaust gas temperatures found in engine exhaust, thereby losing the catalytic performance needed for low temperature operation. Also, the base metals deactivate because of reactions with sulfur compounds at the low temperature end of auto exhaust. As a result, a base metal automobile exhaust... [Pg.487]

Fuel sulfur is also responsible for a phenomena known as storage and release of sulfur compounds. Sulfur oxides (S02,S02) easily react with ceria, an oxygen storage compound incorporated into most TWC catalysts, and also with alumina. When the air/fuel mixture temporarily goes rich and the catalyst temperature is in a certain range, the stored sulfur is released as H2S yielding a rotten egg odor to the exhaust. A small amount of nickel oxide incorporated into the TWC removes the H2S and releases it later as SO2 (75—79). [Pg.489]

Catalyst contamination from sources such as turbine lubricant and boiler feed water additives is usuaUy much more severe than deactivation by sulfur compounds in the turbine exhaust. Catalyst formulation can be adjusted to improve poison tolerance, but no catalyst is immune to a contaminant that coats its surface and prevents access of CO to the active sites. Between 1986 and 1990 over 25 commercial CO oxidation catalyst systems operated on gas turbine cogeneration systems, meeting both CO conversion (40 to 90%) and pressure drop requirements. [Pg.512]

Metal oxides, sulfides, and hydrides form a transition between acid/base and metal catalysts. They catalyze hydrogenation/dehydro-genation as well as many of the reactions catalyzed by acids, such as cracking and isomerization. Their oxidation activity is related to the possibility of two valence states which allow oxygen to be released and reabsorbed alternately. Common examples are oxides of cobalt, iron, zinc, and chromium and hydrides of precious metals that can release hydrogen readily. Sulfide catalysts are more resistant than metals to the formation of coke deposits and to poisoning by sulfur compounds their main application is in hydrodesulfurization. [Pg.2094]


See other pages where Sulfur compounds catalysts is mentioned: [Pg.321]    [Pg.280]    [Pg.75]    [Pg.80]    [Pg.81]    [Pg.408]    [Pg.428]    [Pg.237]    [Pg.520]    [Pg.457]    [Pg.13]    [Pg.14]    [Pg.467]    [Pg.206]    [Pg.206]    [Pg.493]    [Pg.506]    [Pg.80]    [Pg.346]    [Pg.346]    [Pg.353]    [Pg.135]    [Pg.410]    [Pg.45]    [Pg.499]    [Pg.53]    [Pg.313]    [Pg.508]    [Pg.1541]    [Pg.2114]   
See also in sourсe #XX -- [ Pg.370 ]




SEARCH



Catalyst sulfur

Catalysts compounds

© 2024 chempedia.info