Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfur carbon monoxide

Research and development efforts were focused on addressing several of the problems of the day. Sulfur oxides (SOx) were becoming more stringently controlled, and stack gas scrubbers or use of hydrodesulfurized gas oil feed were expensive options, so catalyst makers developed new products that worked in conjunction with a Claus unit to first reduce the sulfur to hydrogen sulfide and then recover it as elemental sulfur. Carbon monoxide, formed at the higher regenerator temperatures resulting from improved zeolite catalysts, needed to be oxidized to improve heat recovery, and additives were developed to accomplish this. Metals tolerance and octane improvement were needed as well, and producers vied with each other to address the needs of the market (85). [Pg.174]

Typically, approximately 70% of the heating value of the feedstock fuel is associated with the carbon monoxide and hydrogen components of the gas, but can be higher depending upon the gasifier type. Hydrogen must be separated from the gas product stream (which also contains carbon dioxide and carbon monoxide as well as other trace contaminants) and polished to remove remaining sulfur, carbon monoxide, and other contaminants to meet the requirements for various end uses. [Pg.773]

Fuel Cell and Fuel Processor Catalyst Tolerance There are major fuel requirements for the gas reformates that must be addressed. These requirements result from the effects of sulfur, carbon monoxide, and carbon deposition on the fuel cell catalyst. The activity of catalysts for steam reforming and autothermal reforming can be affected by sulfur poisoning and coke formation this commonly occurs with most fuels used in fuel cells of present interest. Other fuel constituents can also prove detrimental to various fuel cells. Examples of these are halides, hydrogen chloride, and ammonia. [Pg.252]

Process conditions depend on the type of gas being treated and the catalyst employed. Acetylene removal from cracked gas streams containing sulfur, carbon monoxide, and a large excess of hydrogen can be carried out with nickel/cobalt/chromium/sulfur-based catalysts at 300° to 500°F and 50 to 500 psig. Such an operation will provide a product stream containing less than 10 ppmv acetylene. [Pg.1183]

However, such a level can still be considered too high for vehicles having 3-way catalytic converters. In fact, results observed in the United States (Benson et al., 1991) and given in Figure 5.20 show that exhaust pollutant emissions, carbon monoxide, hydrocarbons and nitrogen oxides, increase from 10 to 15% when the sulfur level passes from 50 ppm to about 450 ppm. This is explained by an inhibiting action of sulfur on the catalyst though... [Pg.252]

Reference methods for criteria (19) and hazardous (20) poUutants estabHshed by the US EPA include sulfur dioxide [7446-09-5] by the West-Gaeke method carbon monoxide [630-08-0] by nondispersive infrared analysis ozone [10028-15-6] and nitrogen dioxide [10102-44-0] by chemiluminescence (qv) and hydrocarbons by gas chromatography coupled with flame-ionization detection. Gas chromatography coupled with a suitable detector can also be used to measure ambient concentrations of vinyl chloride monomer [75-01-4], halogenated hydrocarbons and aromatics, and polyacrylonitrile [25014-41-9] (21-22) (see Chromatography Trace and residue analysis). [Pg.384]

Olefins are carbonylated in concentrated sulfuric acid at moderate temperatures (0—40°C) and low pressures with formic acid, which serves as the source of carbon monoxide (Koch-Haaf reaction) (187). Liquid hydrogen fluoride, preferably in the presence of boron trifluoride, is an equally good catalyst and solvent system (see Carboxylic acids). [Pg.563]

Prior to methanation, the gas product from the gasifier must be thoroughly purified, especially from sulfur compounds the precursors of which are widespread throughout coal (23) (see Sulfurremoval and recovery). Moreover, the composition of the gas must be adjusted, if required, to contain three parts hydrogen to one part carbon monoxide to fit the stoichiometry of methane production. This is accompHshed by appHcation of a catalytic water gas shift reaction. [Pg.63]

The ratio of hydrogen to carbon monoxide is controlled by shifting only part of the gas stream. After the shift, the carbon dioxide, which is formed in the gasifier and in the water gas reaction, and the sulfur compounds formed during gasification, are removed from the gas. [Pg.63]

Iron Sulfur Compounds. Many molecular compounds (18—20) are known in which iron is tetrahedraHy coordinated by a combination of thiolate and sulfide donors. Of the 10 or more stmcturaHy characterized classes of Fe—S compounds, the four shown in Figure 1 are known to occur in proteins. The mononuclear iron site REPLACE occurs in the one-iron bacterial electron-transfer protein mbredoxin. The [2Fe—2S] (10) and [4Fe—4S] (12) cubane stmctures are found in the 2-, 4-, and 8-iron ferredoxins, which are also electron-transfer proteins. The [3Fe—4S] voided cubane stmcture (11) has been found in some ferredoxins and in the inactive form of aconitase, the enzyme which catalyzes the stereospecific hydration—rehydration of citrate to isocitrate in the Krebs cycle. In addition, enzymes are known that contain either other types of iron sulfur clusters or iron sulfur clusters that include other metals. Examples include nitrogenase, which reduces N2 to NH at a MoFe Sg homocitrate cluster carbon monoxide dehydrogenase, which assembles acetyl-coenzyme A (acetyl-CoA) at a FeNiS site and hydrogenases, which catalyze the reversible reduction of protons to hydrogen gas. [Pg.442]

A diagram for one implementation of this process (61,62) is shown in Eigure 11. Recovered potassium sulfate is converted to potassium formate [590-29 ] by reaction with calcium formate [544-17-2] which is made by reacting hydrated lime, Ca(OH)2, and carbon monoxide. The potassium formate (mp 167°C), in hquid form, is recycled to the combustor at about 170°C. Sulfur is removed as soHd calcium sulfate by filtration and then disposed of (see... [Pg.423]

In a vacuum, uncoated molybdenum metal has an unlimited life at high temperatures. This is also tme under the vacuum-like conditions of outer space. Pure hydrogen, argon, and hehum atmospheres are completely inert to molybdenum at all temperatures, whereas water vapor, sulfur dioxide, and nitrous and nitric oxides have an oxidizing action at elevated temperatures. Molybdenum is relatively inert to carbon dioxide, ammonia, and nitrogen atmospheres up to about 1100°C a superficial nitride film may be formed at higher temperatures in the latter two gases. Hydrocarbons and carbon monoxide may carburize molybdenum at temperatures above 1100°C. [Pg.465]

Nickel sulfate also is made by the reaction of black nickel oxide and hot dilute sulfuric acid, or of dilute sulfuric acid and nickel carbonate. The reaction of nickel oxide and sulfuric acid has been studied and a reaction induction temperature of 49°C deterrnined (39). High purity nickel sulfate is made from the reaction of nickel carbonyl, sulfur dioxide, and oxygen in the gas phase at 100°C (40). Another method for the continuous manufacture of nickel sulfate is the gas-phase reaction of nickel carbonyl and nitric acid, recovering the soHd product in sulfuric acid, and continuously removing the soHd nickel sulfate from the acid mixture (41). In this last method, nickel carbonyl and sulfuric acid are fed into a closed-loop reactor. Nickel sulfate and carbon monoxide are produced the CO is thus recycled to form nickel carbonyl. [Pg.10]

Ma.nufa.cture. Nickel carbonyl can be prepared by the direct combination of carbon monoxide and metallic nickel (77). The presence of sulfur, the surface area, and the surface activity of the nickel affect the formation of nickel carbonyl (78). The thermodynamics of formation and reaction are documented (79). Two commercial processes are used for large-scale production (80). An atmospheric method, whereby carbon monoxide is passed over nickel sulfide and freshly reduced nickel metal, is used in the United Kingdom to produce pure nickel carbonyl (81). The second method, used in Canada, involves high pressure CO in the formation of iron and nickel carbonyls the two are separated by distillation (81). Very high pressure CO is required for the formation of cobalt carbonyl and a method has been described where the mixed carbonyls are scmbbed with ammonia or an amine and the cobalt is extracted as the ammine carbonyl (82). A discontinued commercial process in the United States involved the reaction of carbon monoxide with nickel sulfate solution. [Pg.12]

The common treatment methods are acidification, neutralization, and incineration. When oxahc acid is heated slightly in sulfuric acid, it is converted to carbon monoxide, carbon dioxide, and water. Reaction with acid potassium permanganate converts it to carbon dioxide. Neutralization with alkahes, such as caustic soda, yields soluble oxalates. Neutralization with lime gives practically insoluble calcium oxalate, which can be safely disposed of, for instance, by incineration. [Pg.461]

National Ambient Air Quality Standards. Under the Clean Air Act, six criterion pollutants, ie, pollutants of special concern, have been estabhshed by the EPA sulfur oxides (SO ), particulates, carbon monoxide (CO), nitrogen oxides (NO ), o2one (photochemical oxidants), and lead. National Ambient Air QuaUty Standards (NAAQS) were developed by EPA based on threshold levels of air pollution below which no adverse effects could be experienced on human health or the environment. [Pg.77]

Silver sulfate decomposes above 1085°C into silver, sulfur dioxide, and oxygen. This property is utilized ia the separation of silver from sulfide ores by direct oxidation. Silver sulfate is reduced to silver metal by hydrogen, carbon, carbon monoxide, zinc, and copper. [Pg.90]

Chemica.1 Properties. Reviews of carbonyl sulfide chemistry are available (18,23,24). Carbonyl sulfide is a stable compound and can be stored under pressure ia steel cylinders as compressed gas ia equiUbrium with Hquid. At ca 600°C carbonyl sulfide disproportionates to carbon dioxide and carbon disulfide at ca 900°C it dissociates to carbon monoxide and sulfur. It bums with a blue flame to carbon dioxide and sulfur dioxide. Carbonyl sulfide reacts... [Pg.129]

When the Claus reaction is carried out in aqueous solution, the chemistry is complex and involves polythionic acid intermediates (105,211). A modification of the Claus process (by Shell) uses hydrogen or a mixture of hydrogen and carbon monoxide to reduce sulfur dioxide, carbonyl sulfide, carbon disulfide, and sulfur mixtures that occur in Claus process off-gases to hydrogen sulfide over a cobalt molybdate catalyst at ca 300°C (230). [Pg.144]


See other pages where Sulfur carbon monoxide is mentioned: [Pg.639]    [Pg.155]    [Pg.639]    [Pg.155]    [Pg.366]    [Pg.308]    [Pg.508]    [Pg.577]    [Pg.62]    [Pg.370]    [Pg.408]    [Pg.453]    [Pg.516]    [Pg.45]    [Pg.57]    [Pg.317]    [Pg.511]    [Pg.165]    [Pg.170]    [Pg.251]    [Pg.252]    [Pg.475]    [Pg.313]    [Pg.348]    [Pg.506]    [Pg.172]    [Pg.172]    [Pg.342]    [Pg.342]    [Pg.66]    [Pg.262]    [Pg.369]   
See also in sourсe #XX -- [ Pg.60 , Pg.63 ]




SEARCH



Carbon monoxide sulfur dioxide poisoning effect

Carbon monoxide, sulfur dioxide

Carbon sulfur

Sulfur dioxide carbon monoxide oxidation poisoning

Sulfur monoxide

© 2024 chempedia.info