Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cobalt-chromium

It is alloyed with iron, nickel and other metals to make Alnico, an alloy of unusual magnetic strength with many important uses. Stellite alloys, containing cobalt, chromium, and tungsten, are used for high-speed, heavy-duty, high temperature cutting tools, and for dies. [Pg.83]

Chemical ingenuity in using the properties of the elements and their compounds has allowed analyses to be carried out by processes analogous to the generation of hydrides. Osmium tetroxide is very volatile and can be formed easily by oxidation of osmium compounds. Some metals form volatile acetylacetonates (acac), such as iron, zinc, cobalt, chromium, and manganese (Figure 15.4). Iodides can be oxidized easily to iodine (another volatile element in itself), and carbonates or bicarbonates can be examined as COj after reaction with acid. [Pg.100]

Butane-Naphtha Catalytic Liquid-Phase Oxidation. Direct Hquid-phase oxidation ofbutane and/or naphtha [8030-30-6] was once the most favored worldwide route to acetic acid because of the low cost of these hydrocarbons. Butane [106-97-8] in the presence of metallic ions, eg, cobalt, chromium, or manganese, undergoes simple air oxidation in acetic acid solvent (48). The peroxidic intermediates are decomposed by high temperature, by mechanical agitation, and by action of the metallic catalysts, to form acetic acid and a comparatively small suite of other compounds (49). Ethyl acetate and butanone are produced, and the process can be altered to provide larger quantities of these valuable materials. Ethanol is thought to be an important intermediate (50) acetone forms through a minor pathway from isobutane present in the hydrocarbon feed. Formic acid, propionic acid, and minor quantities of butyric acid are also formed. [Pg.68]

Cobalt—chromium films (20 at. % Cr) exhibiting strong perpendicular anisotropy, ie, hexagonal i -axis normal to the substrate surface, have been studied (53). Fifty nanometer films are composed of columnar crystaUites and the domain size was found to be a few stmctural columns in diameter. Magnetization reversal was shown to occur by domain rotation in thick films. Thinner (ca 10-nm thick) films do not show the columnar crystaUite... [Pg.393]

Ammonia forms a great variety of addition or coordination compounds (qv), also called ammoniates, ia analogy with hydrates. Thus CaCl2 bNH and CuSO TNH are comparable to CaCl2 6H20 and CuSO 4H20, respectively, and, when regarded as coordination compounds, are called ammines and written as complexes, eg, [Cu(NH2)4]S04. The solubiHty ia water of such compounds is often quite different from the solubiHty of the parent salts. For example, silver chloride, AgQ., is almost iasoluble ia water, whereas [Ag(NH2)2]Cl is readily soluble. Thus silver chloride dissolves ia aqueous ammonia. Similar reactions take place with other water iasoluble silver and copper salts. Many ammines can be obtained ia a crystalline form, particularly those of cobalt, chromium, and platinum. [Pg.338]

Vitahium FHS ahoy is a cobalt—chromium—molybdenum ahoy having a high modulus of elasticity. This ahoy is also a preferred material. When combiaed with a properly designed stem, the properties of this ahoy provide protection for the cement mantle by decreasing proximal cement stress. This ahoy also exhibits high yields and tensile strength, is corrosion resistant, and biocompatible. Composites used ia orthopedics include carbon—carbon, carbon—epoxy, hydroxyapatite, ceramics, etc. [Pg.190]

Alkyds. Alkyd resins (qv) are polyesters formed by the reaction of polybasic acids, unsaturated fatty acids, and polyhydric alcohols (see Alcohols, POLYHYDRic). Modified alkyds are made when epoxy, sUicone, urethane, or vinyl resins take part in this reaction. The resins cross-link by reaction with oxygen in the air, and carboxylate salts of cobalt, chromium, manganese, zinc, or zirconium are included in the formulation to catalyze drying. [Pg.365]

Alloy Compositions and Product Forms. The nominal compositions of various cobalt-base wear-resistant alloys are Hsted in Table 5. The six most popular cobalt-base wear alloys are Hsted first. SteUite alloys 1, 6, and 12, derivatives of the original cobalt—chromium—tungsten alloys, are characterized by their carbon and tungsten contents. SteUite aUoy 1 is the hardest, most abrasion resistant, and least ductile. [Pg.374]

Cobalt—Chromium Alloys. Co—Cr and Ni—Cr alloys are used predominately for the casting of removable partial dentures fixed partial dentures (bridges), crowns, and inlays are also cast. Because of high hardness, corrosion resistance, and wear resistance cobalt-chromium alloys are used for bite adjustments and as serrated inserts in plastic teeth used in fliU dentures. These alloys are well tolerated by the body and also are used for dental implants and orthopedic implant alloys. [Pg.484]

Table 9 Hsts select properties of Co—Cr alloys. It is generally conceded that the casting shrinkage of the cobalt—chromium alloys is greater than that of the gold alloys. The lower density of the base metal alloys provides a weight advantage over the higher-density gold alloys in certain types of bulky restorations. Cobalt—chromium alloys have Knoop hardnesses of 310—415. Table 9 Hsts select properties of Co—Cr alloys. It is generally conceded that the casting shrinkage of the cobalt—chromium alloys is greater than that of the gold alloys. The lower density of the base metal alloys provides a weight advantage over the higher-density gold alloys in certain types of bulky restorations. Cobalt—chromium alloys have Knoop hardnesses of 310—415.
The second approach, that of surface coating, is more difficult, and that means more expensive. But it is often worth it. Hard, corrosion resistant layers of alloys rich in tungsten, cobalt, chromium or nickel can be sprayed onto surfaces, but a refinishing process is almost always necessary to restore the dimensional tolerances. Hard ceramic coatings such as AbO, Cr203, TiC, or TiN can be deposited by plasma methods and these not only give wear resistance but resistance to oxidation and... [Pg.248]

Moberg, L. E. Long-term Corrosion Studies In Vitro of Gold, Cobalt-Chromium and Nickel-Chromium Alloys in Contact Acta Odontologia Scandanavia, 43, 215-222 (1985)... [Pg.467]

Wood, J. F. L. Mucosal Reaction to Cobalt Chromium Alloy British DentalJournal, 136, 423-424 (1974)... [Pg.467]

Stenberg, T. and Bergman, B. Release and Uptake of Cobalt from Cobalt-Chromium Alloy Implants , Acta Odontologia Scandanavia 41, 149-154 (1983)... [Pg.467]

Significant advances have also been made by forging titanium alloy (T1-6A1-4V) and cobalt chromium alloys cold working multiphase cobalt based alloys and by hot isostatically pressing cobalt chromium alloy powders. The property values claimed by the manufacturers are far in excess of the minimum values specified in the British, American and International Standards... [Pg.469]

Table 2.24 Breakdown potentials (mV) for 316 stainless steel, titanium and cobalt-chromium-molybdenum alloy in oxygen-free 0.17 m NaCl solution at 37°C using a silver/ silver chloride reference electrode. Table 2.24 Breakdown potentials (mV) for 316 stainless steel, titanium and cobalt-chromium-molybdenum alloy in oxygen-free 0.17 m NaCl solution at 37°C using a silver/ silver chloride reference electrode.
Table 2.25 Breakdown potentials for 316S12 stainless steel (cold worked), high nitrogen stainless steel (cold worked), titanium-6Al-4V and cast-cobalt-chromium-molybdenum alloy in continuously aerated aqueous acidified chloride solution 0.23 m [C1 ] pH 1.5 at 25°C. ... Table 2.25 Breakdown potentials for 316S12 stainless steel (cold worked), high nitrogen stainless steel (cold worked), titanium-6Al-4V and cast-cobalt-chromium-molybdenum alloy in continuously aerated aqueous acidified chloride solution 0.23 m [C1 ] pH 1.5 at 25°C. ...
Edwards e/a/. carried out controlled potential, slow strain-rate tests on Zimaloy (a cobalt-chromium-molybdenum implant alloy) in Ringer s solution at 37°C and showed that hydrogen absorption may degrade the mechanical properties of the alloy. Potentials were controlled so that the tensile sample was either cathodic or anodic with respect to the metal s free corrosion potential. Hydrogen was generated on the sample surface when the specimen was cathodic, and dissolution of the sample was encouraged when the sample was anodic. The results of these controlled potential tests showed no susceptibility of this alloy to SCC at anodic potentials. [Pg.476]

The successful clinical use of titanium and cobalt-chromium alloy combinations has been reported Lucas etal. also investigated this combination using electrochemical studies based on mixed potential and protection potential theories. Verification of these studies was made by direct coupling experiments. The electrochemical studies predicted coupled corrosion potentials of -0.22 V and low coupled corrosion rates of 0.02 ft A/cm. Direct coupling experiments verified these results. The cobalt-titanium interfaces on the implants were macroscopically examined and no instances of extensive corrosion were found. Overall, the in-vitro corrosion studies and the examination of retrieved prostheses predicted no exaggerated in-vivo corrosion due to the coupling of these cobalt and titanium alloys. [Pg.479]

Edwards, B. J., Louthan, M. R. and Sisson, R. D., Hydrogen Embrittlement of Zimaloy A Cobalt-Chromium-Molybdenum Orthopaedic Implant Alloy , in Corrosion and Degradation of Implant Materials, Second Symposium, (Eds) A. C. Fraker and C. D. Griffin, 11-29 ASTM Publication STP 859, Philadelphia (1985)... [Pg.482]

In recent years, the spraying process has been adapted for hard facing, using the chromium-nickel-boron alloys which have become known as Colmonoy. More recently still, the cobalt-base Stellite alloys have also been used. These materials in powder form are sprayed on to the surface in the usual way. The deposit is afterwards heat treated by a torch, so that fusion takes place. The process is often known as spray-welding. Such coatings are primarily used for hard facing under wear conditions, but as the Anal surface is nickel-chromium or cobalt-chromium they exhibit very high anticorrosive properties. [Pg.429]

The reaction is a sensitive one, but is subject to a number of interferences. The solution must be free from large amounts of lead, thallium (I), copper, tin, arsenic, antimony, gold, silver, platinum, and palladium, and from elements in sufficient quantity to colour the solution, e.g. nickel. Metals giving insoluble iodides must be absent, or present in amounts not yielding a precipitate. Substances which liberate iodine from potassium iodide interfere, for example iron(III) the latter should be reduced with sulphurous acid and the excess of gas boiled off, or by a 30 per cent solution of hypophosphorous acid. Chloride ion reduces the intensity of the bismuth colour. Separation of bismuth from copper can be effected by extraction of the bismuth as dithizonate by treatment in ammoniacal potassium cyanide solution with a 0.1 per cent solution of dithizone in chloroform if lead is present, shaking of the chloroform solution of lead and bismuth dithizonates with a buffer solution of pH 3.4 results in the lead alone passing into the aqueous phase. The bismuth complex is soluble in a pentan-l-ol-ethyl acetate mixture, and this fact can be utilised for the determination in the presence of coloured ions, such as nickel, cobalt, chromium, and uranium. [Pg.684]

The carbides are generally not resistant to molten slags and fused salts. Their resistance to molten metal is usually poor. For instance, TiC is attacked by nickel, cobalt, chromium, and silicon. SiC is attacked by aluminum. [Pg.440]


See other pages where Cobalt-chromium is mentioned: [Pg.234]    [Pg.234]    [Pg.234]    [Pg.234]    [Pg.463]    [Pg.671]    [Pg.68]    [Pg.26]    [Pg.373]    [Pg.373]    [Pg.376]    [Pg.477]    [Pg.477]    [Pg.481]    [Pg.484]    [Pg.485]    [Pg.485]    [Pg.486]    [Pg.495]    [Pg.787]    [Pg.307]    [Pg.275]    [Pg.467]    [Pg.469]    [Pg.471]    [Pg.471]    [Pg.484]    [Pg.112]   
See also in sourсe #XX -- [ Pg.98 ]

See also in sourсe #XX -- [ Pg.153 ]




SEARCH



Alloy cobalt-chromium-nickel

Ammines, chromium cobalt

Benzene, chromium complex cobalt complexes

Biological cobalt/chromium alloys

Carbonyl complexes, chromium cobalt

Carbonyl complexes, chromium cobalt-molybdenum-nickel

Carbonyl complexes, chromium cobalt-molybdenum-ruthenium

Carbonyl complexes, chromium cobalt-platinum

Carbonyls, chromium cobalt

Carbonyls, chromium cobalt-platinum

Cobalt Chromium Aluminates

Cobalt chromium aluminate blue-green

Cobalt-Chromium Femoral Head

Cobalt-chromium alloy

Cobalt-chromium oxide catalysts

Cobalt-chromium-molybdenum

Cobalt-chromium-molybdenum alloy

Cobalt/chromium alloys biocompatibility

Cobalt/chromium alloys casting temperature

Cobalt/chromium alloys drilling parameters

Cobalt/chromium alloys fatigue

Cobalt/chromium alloys machining

Cobalt/chromium alloys mechanical properties

Cobalt/chromium alloys processing

Cobalt/chromium alloys turning

Cobalt/chromium alloys wrought

Corrosion cobalt/chromium alloys

Preparation of Nickel, Cobalt, or Chromium Chloride

© 2024 chempedia.info