Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfides from disulfides

Vinyllithium [917-57-7] can be formed direcdy from vinyl chloride by means of a lithium [7439-93-2] dispersion containing 2 wt % sodium [7440-23-5] at 0—10°C. This compound is a reactive intermediate for the formation of vinyl alcohols from aldehydes, vinyl ketones from organic acids, vinyl sulfides from disulfides, and monosubstituted alkenes from organic halides. It can also be converted to vinylcopper [37616-22-1] or divinylcopper lithium [22903-99-7], which can then be used to introduce a vinyl group stereoselectively into a variety of a, P-unsaturated systems (26), or simply add a vinyl group to other a, P-unsaturated compounds to give y, 5-unsaturated compounds. Vinyllithium reagents can also be converted to secondary alcohols with trialkylb o r ane s. [Pg.414]

Commercial-scale processes have been developed for the production of hydrogen sulfide from heavy fuel oils and sulfur as well as from methane, water vapor, and sulfur. The latter process can be carried out in two steps reaction of methane with sulfur to form carbon disulfide and hydrogen sulfide followed by hydrolysis of carbon disulfide (116). [Pg.135]

The KF-S reaction presumably involves attack of a fluonnated caibanion on sulfur, whereas the S-Sbp5 reaction may involve electrophilic attack by a cationic sulfur species on the olefin under the strong Lewis acid conditions Electrophilic attack on a fluonnated olefin may also account for formation of a perfluorinated sulfide from reaction of bis(pentafluorophenyl)disulfide with hexafluoropropylene under superacid conditions [IS5] (equation 28)... [Pg.75]

Sulfur in crude oils is mainly present in the form of organosulfur compounds. Hydrogen sulfide is the only important inorganic sulfur compound found in crude oil. Its presence, however, is harmful because of its corrosive nature. Organosulfur compounds may generally be classified as acidic and non-acidic. Acidic sulfur compounds are the thiols (mercap-tans). Thiophene, sulfides, and disulfides are examples of non-acidic sulfur compounds found in crude fractions. Extensive research has been carried out to identify some sulfur compounds in a narrow light petroleum fraction.Examples of some sulfur compounds from the two types are ... [Pg.15]

Sulfides and disulfides can be produced by bacterial reactions in the marine environment. 2-Dimeth-ylthiopropionic acid is produced by algae and by the marsh grass Spartina alternifolia, and may then be metabolized in sediment slurries under anoxic conditions to dimethyl sulfide (Kiene and Taylor 1988), and by aerobic bacteria to methyl sulfide (Taylor and Gilchrist 1991). Further details are given in Chapter 11, Part 2. Methyl sulfide can also be produced by biological methylation of sulfide itself (HS ). Carbon radicals are not the initial atmospheric products from organic sulfides and disulfides, and the reactions also provide an example in which the rates of reaction with nitrate... [Pg.21]

Strains of some facultatively heterotrophic and methylotrophic bacteria can use CS2 as sole energy source, and under aerobic conditions also COS, dimethyl sulfide, dimethyl disulfide, and thioacetate (Jordan et al. 1995). It was proposed that the strains belonged to the genus Thiobacillus, though they are clearly distinct from previously described species, and they have now been assigned to Paracoccus denitrificans (Jordan et al. 1997). [Pg.580]

GC/FPD has been used to measure hydrogen sulfide, free disulfide, and dissolved metal sulfide complexes in water (Radford-Knoery and Cutter 1993). Hydrogen sulfide was measured in the headspace of the sample (100 mL) with a detection limit of 0.6 pmol/L. A detection limit of 0.2 pmol/L was obtained for total dissolved sulfide. This method allows for the determination of the concentration of free sulfide that is in equilibrium with hydrogen sulfide. Complexed sulfide can be estimated from the difference between total dissolved sulfide and free sulfide. [Pg.164]

Kanagawa T, Mikami E. 1989. Removal of methanethiol, dimethyl sulfide, dimethyl disulfide, and hydrogen sulfide from contaminated air by Thiobacillus thioparus TK-m. Appl Environ Microbiol 55(3) 555-558. [Pg.189]

Chang and co-workers isolated strain Nocardia sp. CYKS2 from a dyeing industry wastewater using DBT as the sole sulfur source [27]. This strain also desulfurized DBT to the same product 2-HBP however, it had broader substrate specificity and was reported to desulfurize thiophenes, sulfides, and disulfides (Table 3) in addition to DBT. However, it did not desulfurize trithiane, thianthrene and 4,4 -thiodiphenol. The desulfurization experiments were conducted in batch with the rate reported as 0.279 mg-sulfur/L dispersion/h for DBT conversion. [Pg.82]

Beavon [Beavon Sulfur Removal] Also called BSR. A process for removing residual sulfur compounds from the effluent gases from the Claus process. Catalytic hydrogenation over a cobalt/molybdena catalyst converts carbonyl sulfide, carbon disulfide, and other... [Pg.33]

Folkins A process for making carbon disulfide from methane and sulfur at elevated temperature and pressure. A complex separation system removes the hydrogen sulfide from the products so that this sulfur can be re-used. The process can be operated catalytically or non-catalytically. Developed in 1948 by H. 0. Folkins and others at the Pure Oil Company, Chicago. [Pg.109]

Iron Sponge Also called Dry box. An obsolete process for removing hydrogen sulfide from gas streams by reaction with iron oxide monohydrate. The ferric sulfide that is formed is periodically re-oxidized to regenerate ferric oxide and elemental sulfur. When this process becomes inefficient because of pore-blockage, the sulfur is either oxidized to sulfur dioxide for conversion to sulfuric acid, or is extracted with carbon disulfide. [Pg.146]

It is more than likely that when sulfur occurs in a crude oil or in coal (other than the pyrites), it is organically bound in one of the three forms listed in Table 8.3—the thiols, sulfides, or disulfides. The combustion of these compounds is very much different from that of other sulfur compounds in that... [Pg.451]

At the time of the earlier review (66HC1155), it was already known that combinations of arenes with sulfur, or with sulfur mono- or dichlorides in the presence of Lewis acids (IV,B,1), or of aryl thiols, diaryl sulfides, or disulfides (IV,B,2 and 3) again heated with Lewis acid catalysts, generate thianthrenes, sometimes in acceptable preparative yields. A complimentary method is the treatment of aryl thiols with c. H2SO4. Routes from arenes and aryl thiols almost certainly involve the initial formation of diaryl sulfides. All these methods inevitably give symmetrical thianthrenes carrying identical substituents on each benzene ring (Scheme 9), unless the second sulfur is introduced in a controlled fashion into a preformed, unsymmetrical diphenyl sulfide. [Pg.366]

The method described is adapted from the procedures of Kym 3 and Engelhardt, Latschinoff, and Malyscheff.4 Thio-benzoic acid has been prepared by the reaction of benzoyl chloride with potassium sulfide,4 hydrogen sulfide in pyridine,6 6 and magnesium bromide hydrosulfide.7 It is formed from dibenzoyl disulfide with potassium hydrosulfide,4 potassium hydroxide,4 8 and ammonia.9 It is also formed from dibenzoyl sulfide, from phenyl benzoate, and from benzoic anhydride with alcoholic potassium hydrosulfide.4 It has been obtained from dibenzoyl sulfide and hydrogen sulfide,10 carbon oxysulfide and phenyl-magnesium bromide,11 12 dibenzyl disulfide and sodium ethoxide,13 benzyl chloride and sulfur in the presence of potassium hydroxide,14 and benzylthiosulfuric acid and alkali.18 16... [Pg.103]

Wild and cultivated blackberries have been used as food and medicine for hundreds of years [106]. Approximately 150 volatiles have been reported from blackberries [107]. The aroma profile is complex, as no single volatile is described as characteristic for blackberry [108, 109]. Several compounds have been suggested as prominent volatiles in blackberries using AEDA, e.g. ethyl hexanoate, ethyl 2-methylbutanoate, ethyl 2-methylpropanoate, 2-heptanone, 2-undecanone, 2-heptanol, 2-methylbutanal, 3-methylbutanal, hexanal, ( )-2-hexenal, furaneol, thiophene, dimethyl sulfide, dimethyl disulfide, dimethyl trisulfide, 2-methylthiophene, methional, a-pinene, limonene, linalool, sabinene. [Pg.162]

The edible portion of broccoli Brassica oleracea var. italica) is the inflorescence, and it is normally eaten cooked, with the main meal. Over 40 volatile compounds have been identified from raw or cooked broccoli. The most influential aroma compounds found in broccoli are sulfides, isothiocyanates, aliphatic aldehydes, alcohols and aromatic compounds [35, 166-169]. Broccoli is mainly characterised by sulfurous aroma compounds, which are formed from gluco-sinolates and amino acid precursors (Sects. 7.2.2, 7.2.3) [170-173]. The strong off-odours produced by broccoli have mainly been associated with volatile sulfur compounds, such as methanethiol, hydrogen sulfide, dimethyl disulfide and trimethyl disulfide [169,171, 174, 175]. Other volatile compounds that also have been reported as important to broccoli aroma and odour are dimethyl sulfide, hexanal, (Z)-3-hexen-l-ol, nonanal, ethanol, methyl thiocyanate, butyl isothiocyanate, 2-methylbutyl isothiocyanate and 3-isopropyl-2-methoxypyrazine... [Pg.169]

The buds and the leaves (less often) of the Brussels sprout plant (Brasska olera-cea var. gemmifera) are eaten cooked with the main meal. In Brussels sprouts, breakdown products from glucosinolates are dominant and represent about 80-90% of the volatiles in headspace samples [176]. The residual volatiles are mostly sulfur compounds [176]. Compounds likely to be associated with the aroma of Brussels sprouts are 2-propenyl isothiocyanate, dimethyl sulfide, dimethyl disulfide and dimethyl trisulfide (Table 7.6) [35,176]. [Pg.171]


See other pages where Sulfides from disulfides is mentioned: [Pg.414]    [Pg.414]    [Pg.506]    [Pg.414]    [Pg.360]    [Pg.218]    [Pg.144]    [Pg.1541]    [Pg.180]    [Pg.114]    [Pg.120]    [Pg.143]    [Pg.327]    [Pg.50]    [Pg.80]    [Pg.262]    [Pg.551]    [Pg.86]    [Pg.179]    [Pg.91]    [Pg.158]    [Pg.144]    [Pg.47]    [Pg.180]    [Pg.895]    [Pg.258]    [Pg.144]   
See also in sourсe #XX -- [ Pg.35 , Pg.87 , Pg.187 ]




SEARCH



Disulfides sulfides

From disulfides

From sulfides

© 2024 chempedia.info