Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Styrenes fluorinated

Many synthetic latices exist (7,8) (see Elastomers, synthetic). They contain butadiene and styrene copolymers (elastomeric), styrene—butadiene copolymers (resinous), butadiene and acrylonitrile copolymers, butadiene with styrene and acrylonitrile, chloroprene copolymers, methacrylate and acrylate ester copolymers, vinyl acetate copolymers, vinyl and vinyUdene chloride copolymers, ethylene copolymers, fluorinated copolymers, acrylamide copolymers, styrene—acrolein copolymers, and pyrrole and pyrrole copolymers. Many of these latices also have carboxylated versions. [Pg.23]

As noted, these zinc reagents find extensive application in the preparation of fluorinated styrenes [113, 114], aryl-substituted fluorinated propenes [114],fluor-inateddienes [115,116], and tnfluorovinyl ketones [117], as illustrated in equations 83-88... [Pg.689]

Fluonnation and skeletal transformation of fluorinated cycloalkanes occurs in the reaction with antimony pentafluoride at high temperature [777] In the case of perfluorinated benzocyclobutanes, an unexpected alicyclic ring cleavage has been observed Perfluorinated alkyl benzocyclobutanes, when treated with antimony pentafluoride, ean be converted to perfluorinated styrenes and then transformed to perfluorinated indans [77S, 779]... [Pg.921]

Postelnek,W., Colemann, L. E., and Lovelace, A. M. Fluorine-Containing Polymers. I. Fluorinated Vinyl Polymers with Functional Groups, Condensation Polymers, and Styrene Polymers. Vol. 1, pp. 75— 113. [Pg.159]

I. Fluorinated Vinyl Polymers with Functional Groups, Condensation Polymers, and Styrene Polymers. Vol. 1, pp. 75—113. [Pg.156]

A variety of ionomers have been described in the research literature, including copolymers of a) styrene with acrylic acid, b) ethyl acrylate with methacrylic acid, and (c) ethylene with methacrylic acid. A relatively recent development has been that of fluorinated sulfonate ionomers known as Nafions, a trade name of the Du Pont company. These ionomers have the general structure illustrated (10.1) and are used commercially as membranes. These ionomers are made by copolymerisation of the hydrocarbon or fluorocarbon monomers with minor amounts of the appropriate acid or ester. Copolymerisation is followed by either neutralisation or hydrolysis with a base, a process that may be carried out either in solution or in the melt. [Pg.149]

Compounds lb and 2b were the Urst fluorinated ligands tested in Mn-catalyzed alkene epoxidation [5,6]. The biphasic Uquid system perfluorooc-tane/dichloromethane led to excellent activity and enantioselectivity (90% ee) in the epoxidation of indene with oxygen and pivalaldehyde (Scheme 1, Table 1). In addition, the fluorous solution of the catalyst was reused once and showed the same activity and selectivity. This represents a considerable improvement over the behavior in the homogeneous phase, where the used catalyst was bleached and reuse was impossible. Unfortunately, indene was the only suitable substrate for this system, which failed to epoxidize other alkenes (such as styrene or 1,2-dihydronaphthalene) with high enantioselectivity. The system was also strongly dependent on the oxidant and only 71% ee was obtained in the epoxidation of indene with mCPBA at - 50 °C. [Pg.153]

Phenolic antioxidants in rubber extracts were determined indirectly photometrically after reaction with Fe(III) salts which form a red Fe(II)-dipyridyl compound. The method was applicable to Vulkanox BKF and Vulkanox KB [52]. Similarly, aromatic amines (Vulkanox PBN, 4020, DDA, 4010 NA) were determined photometrically after coupling with Echtrotsalz GG (4-nitrobenzdiazonium fluoroborate). For qualitative analysis of vulcanisation accelerators in extracts of rubbers and elastomers colour reactions with dithio-carbamates (for Vulkacit P, ZP, L, LDA, LDB, WL), thiuram derivatives (for Vulkacit I), zinc 2-mercaptobenzthiazol (for Vulkacit ZM, DM, F, AZ, CZ, MOZ, DZ) and hexamethylene tetramine (for Vulkacit H30), were mentioned as well as PC and TLC analyses (according to DIN 53622) followed by IR identification [52]. 8-Hydroquinoline extraction of interference ions and alizarin-La3+ complexation were utilised for the spectrophotometric determination of fluorine in silica used as an antistatic agent in PE [74], Also Polygard (trisnonylphenylphosphite) in styrene-butadienes has been determined by colorimetric methods [75,76], Most procedures are fairly dated for more detailed descriptions see references [25,42,44],... [Pg.311]

Carbon radicals bearing a single fluorine atom are produced via denitration. They react with styrene to give the adduct in good yield (Eq. 7.86), but with electron-deficient alkenes yields are very low.133... [Pg.210]

A preferable system is poly(p-fluorostyrene) doped into poly(styrene). Since rotations about the 1,4 phenyl axis do not alter the position of the fluorine, the F spin may be regarded as being at the end of a long "bond" to the backbone carbon. In standard RIS theory, this polymer would be treated with dyad statistical weights to automatically take into account conformations of the vinyl monomer unit which are excluded on steric grounds. We have found it more convenient to retain the monad statistical weight structure employed for the poly(methylene) calculations. The calculations reproduce the experimental unperturbed dimensions quite well when a reasonable set of hard sphere exclusion distances is employed. [Pg.286]

Figure 5 is an ORTEP computer plot of the first 50 backbone carbons in a typical chain. Only the fluorine atoms of the sidechains are shown. The various hard sphere exclusions conspire dramatically to keep the fluorines well separated and the chain highly extended even without introducing any external perturbations. The characteristic ratio from the computer calculations is about 11.6 from data for poly(p-chlorostyrene), CR = I l.l, poly(p-bromostyrene), CR = 12.3, and poly(styrene), CR = 10.3 (all in toluene at 30°C), we expect the experimental value for the fluoro-polymer to be in the range of 10 to 12. [Pg.286]

Transfer of the initial proton polarization is not confined to other protons or 13C, but the signals of other heteronuclei (2H, 15N, 29Si, 31P) in the hydrogenation products can also become substantially enhanced, thereby also increasing their receptivity. Accordingly, the transfer of the PHIP-derived high spin order to 19F has been accomplished using a set of chemically similar fluorinated styrene and ethynylbenzene derivatives. [Pg.352]

However, one should not forget that apart from the complexity of the synthesis fluoropolymers are very expensive. For example, the price of fluoro-rubber is more than 30-fold that of an ordinary rubber such as butadiene-styrene (SBR) or ethylene-propylene (EPDM). Cost was one of the factors that gave impetus to research polymer surface fluorination, with the object of imparting the properties of fluoropolymers to the surfaces of less expensive polymers without changing their bulk properties. [Pg.229]

Table XII. Effect of Organic Additives (Urea, Silanes, Fluorinated Alkyl esters) on Grafting of Styrene to Polypropylene Initiated by UVa... Table XII. Effect of Organic Additives (Urea, Silanes, Fluorinated Alkyl esters) on Grafting of Styrene to Polypropylene Initiated by UVa...
An alternative approach to the use of partially fluorinated systems to reduce the cost of fluorinated PEMs has been developed by DeSimone et al. a perfluo-rinated vinyl ether is copolymerized with a hydrocarbon monomer (styrene), sulfonated, and then subsequently fluorinated to replace existing C-H bonds with C-E bonds (Eigure 3.18). Thus yields the perfluorinated, cross-linked sul-fonyl fluoride membrane that can then be hydrolyzed to give the PEM (7). Because the membranes are cross-linked, considerably higher acid contents (up to 1.82 meq/g) are possible for these materials in comparison to Nafion, leading also to higher proton conductivity values. [Pg.140]


See other pages where Styrenes fluorinated is mentioned: [Pg.565]    [Pg.565]    [Pg.423]    [Pg.296]    [Pg.557]    [Pg.216]    [Pg.341]    [Pg.54]    [Pg.115]    [Pg.911]    [Pg.1077]    [Pg.340]    [Pg.130]    [Pg.203]    [Pg.111]    [Pg.112]    [Pg.127]    [Pg.148]    [Pg.157]    [Pg.161]    [Pg.282]    [Pg.56]    [Pg.236]    [Pg.1370]    [Pg.156]    [Pg.194]    [Pg.123]    [Pg.210]    [Pg.210]    [Pg.317]    [Pg.154]   
See also in sourсe #XX -- [ Pg.720 , Pg.725 , Pg.726 ]




SEARCH



Fluorinated styrene monomers

Fluorinated styrenes, preparation

Fluorine-containing Styrenes

Polymerization of Styrene in Fluorinated Solvents

© 2024 chempedia.info