Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectroscopy quantitative analysis

Experimental Profile of Infrared Spectroscopy Quantitative Analysis... [Pg.327]

The iron content of the produced samples was determined by X-ray fluorescence spectroscopy. Quantitative analysis was performed with the help of analytictJ standard and the results are listed in the second column of Table 1. [Pg.64]

As far as the quantitative evaluation of vibrational spectra is concerned, IR and NIR spectroscopy follow Beer s law, whereas the Raman intensity JRaman is directly proportional to the concentration of the compound to be determined (Figure i),i iS Si To compensate laser fluctuations, in many cases, quantitative Raman spectroscopy is performed with an internal reference signal in the vicinity of the analytical band. For Raman and IR spectroscopy, quantitative analysis can be performed by either univariate evaluation of band heights/ areas or multivariate evaluation (e.g., partial least-squares (PLS) regression) of large spectral regions. Due to the overlap of many absorption bands for the quantitative analysis of NIR spectra, predominantly multivariate chemometric procedures are applied. For an in-depth study of the precautions, pitfalls, and limitations, which have to be observed or may be encountered in the measurement of vibrational spectra, the reader is referred to the pertinent literature. " ... [Pg.260]

Examples that use Raman spectroscopy in the quantitative analysis of materials are enonnous. Technology that takes Raman based techniques outside the basic research laboratory has made these spectroscopies also available to industry and engineering. It is not possible here to recite even a small portion of applications. Instead we simply sketch one specific example. [Pg.1217]

This text covers quantitative analysis by electron energy-loss spectroscopy in the electron microscope along with instrumentation and applicable electron-scattering theory. [Pg.1328]

The simplest use of an NMR spectnim, as with many other branches of spectroscopy, is for quantitative analysis. Furthennore, in NMR all nuclei of a given type have the same transition probability, so that their resonances may be readily compared. The area underneath each isolated peak in an NMR spectnim is proportional to the number of nuclei giving rise to that peak alone. It may be measured to 1% accuracy by digital integration of the NMR spectnim, followed by comparison with the area of a peak from an added standard. [Pg.1441]

The conventional method for quantitative analysis of galHum in aqueous media is atomic absorption spectroscopy (qv). High purity metallic galHum is characteri2ed by trace impurity analysis using spark source (15) or glow discharge mass spectrometry (qv) (16). [Pg.160]

In addition to modem spectroscopic methods ( H nmr spectroscopy, ftir spectroscopy) and chromatographic methods (gc, hplc), HBr titration (29) is suitable for the quantitative analysis of ethyleneimine samples which contain relatively large amounts of ethyleneimine. In this titration, the ethyleneimine ring is opened with excess HBr in glacial acetic acid, and unconsumed HBr is back-titrated against silver nitrate. [Pg.12]

In addition to the spark emission methods, quantitative analysis directly on soHds can be accompHshed using x-ray fluorescence, or, after sample dissolution, accurate analyses can be made using plasma emission or atomic absorption spectroscopy (37). [Pg.105]

Instmmental methods of analysis provide information about the specific composition and purity of the amines. QuaUtative information about the identity of the product (functional groups present) and quantitative analysis (amount of various components such as nitrile, amide, acid, and deterruination of unsaturation) can be obtained by infrared analysis. Gas chromatography (gc), with a Hquid phase of either Apiezon grease or Carbowax, and high performance Hquid chromatography (hplc), using siHca columns and solvent systems such as isooctane, methyl tert-huty ether, tetrahydrofuran, and methanol, are used for quantitative analysis of fatty amine mixtures. Nuclear magnetic resonance spectroscopy (nmr), both proton ( H) and carbon-13 ( C), which can be used for quaHtative and quantitative analysis, is an important method used to analyze fatty amines (8,81). [Pg.223]

The classical wet-chemical quaUtative identification of chromium is accompHshed by the intense red-violet color that develops when aqueous Cr(VI) reacts with (5)-diphenylcarba2ide under acidic conditions (95). This test is sensitive to 0.003 ppm Cr, and the reagent is also useful for quantitative analysis of trace quantities of Cr (96). Instmmental quaUtative identification is possible using inductively coupled argon plasma—atomic emission spectroscopy... [Pg.140]

Instrumental Quantitative Analysis. Methods such as x-ray spectroscopy, oaes, and naa do not necessarily require pretreatment of samples to soluble forms. Only reUable and verified standards are needed. Other instmmental methods that can be used to determine a wide range of chromium concentrations are atomic absorption spectroscopy (aas), flame photometry, icap-aes, and direct current plasma—atomic emission spectroscopy (dcp-aes). These methods caimot distinguish the oxidation states of chromium, and speciation at trace levels usually requires a previous wet-chemical separation. However, the instmmental methods are preferred over (3)-diphenylcarbazide for trace chromium concentrations, because of the difficulty of oxidizing very small quantities of Cr(III). [Pg.141]

X-Ray Fluorescence analysis (XRF) is a well-established instrumental technique for quantitative analysis of the composition of solids. It is basically a bulk evaluation method, its analytical depth being determined by the penetration depth of the impinging X-ray radiation and the escape depth of the characteristic fluorescence quanta. Sensitivities in the ppma range are obtained, and the analysis of the emitted radiation is mosdy performed using crystal spectrometers, i.e., by wavelength-dispersive spectroscopy. XRF is applied to a wide range of materials, among them metals, alloys, minerals, and ceramics. [Pg.349]

Several features of ISS quantitative analysis should be noted. First of all, the relative sensitivities for the elements increase monotonically with mass. Essentially none of the other surface spectroscopies exhibit this simplicity. Because of this simple relationship, it is possible to mathematically manipulate the entire ISS spectrum such that the signal intensity is a direct quantitative representation of the surface. This is illustrated in Figure 5, which shows a depth profile of clean electrical connector pins. Atomic concentration can be read roughly as atomic percent direcdy from the approximate scale at the left. [Pg.520]

Rutherford back-scattering spectroscopy (RBS) is one of the most frequently used techniques for quantitative analysis of composition, thickness, and depth profiles of thin solid films or solid samples near the surface region. It has been in use since the nineteen-sixties and has since evolved into a major materials-characterization technique. The number and range of applications are enormous. Because of its quantitative feature, RBS often serves as a standard for other techniques. [Pg.141]

One other technique has become central in surface research this is X-ray photoelectron spectrometry, earlier known as ESCA, electron spectroscopy for chemical analysis . Photoelectrons are emitted from a surface irradiated by X-rays. The precautions which have to be taken to ensure accurate quantitative analysis by this much-used technique are set out by Seah (1980). [Pg.408]

The value of infrared spectra for identifying substances, for verifying purity, and for quantitative analysis rivals their usefulness in learning molecular structure. The infrared spectrum is as important as the melting point for characterizing a pure substance. Thus infrared spectroscopy has become an important addition to the many techniques used by the chemist. [Pg.249]

The problems involved in quantitative analysis using NMR spectroscopy, have been discussed by several authors and it is evident that it still causes a lot of problems as especially pointed out by Hays55 in his excellent review on the subject. Thus in liquid state NMR spectroscopy the quantitative estimation of atoms and groups involves the use of normal analytical method. In the case of solid state NMR spectroscopy, however, the application of the cross-polarization technique results in signal enhancements and allows repetition rates faster than those allowed by the carbon C-13 Tl. Therefore, the distortion of relative spectral intensities must always be considered a possibility, and hence quantitative spectra will not always be obtained. [Pg.19]

X-ray photoelectron spectroscopy (XPS), which is synonymous with ESCA (Electron Spectroscopy for Chemical Analysis), is one of the most powerful surface science techniques as it allows not only for qualitative and quantitative analysis of surfaces (more precisely of the top 3-5 monolayers at a surface) but also provides additional information on the chemical environment of species via the observed core level electron shifts. The basic principle is shown schematically in Fig. 5.34. [Pg.244]

A. Cimino, D. Gazzoli, and M. Valigi, XPS quantitative analysis and models of supported oxide catalysts, Journal of Electron Spectroscopy and Related Phenomena 104, 1-29(1999). [Pg.512]

The applications of EPR spectroscopy reviewed in the present chapter are based on the sensitivity of the spectrum displayed by iron-sulfur centers to various characteristics, such as the redox state of the center, the distribution of the valences on the iron ions, the nature and the geometry of the ligands, and the presence of nearby paramagnetic species. Although considerable progress has been made during the past few years in the quantitative analysis of these various effects in the case of the conventional iron-sulfur centers described in Section II, the discovery of centers exhibiting unusual EPR properties as... [Pg.484]

Analytical electron microscopy (AEM) can use several signals from the specimen to analyze volumes of catalyst material about a thousand times smaller than conventional techniques. X-ray emission spectroscopy (XES) is the most quantitative mode of chemical analyse in the AEM and is now also useful as a high resolution elemental mapping technique. Electron energy loss spectroscopy (EELS) vftiile not as well developed for quantitative analysis gives additional chemical information in the fine structure of the elemental absorption edges. EELS avoids the problem of spurious x-rays generated from areas of the spectrum remote from the analysis area. [Pg.370]

D.M. Haaland, Multivariate Calibration Methods Applied to the Quantitative Analysis of Infrared Spectra, Chapter I in Computer-Enhanced Analytical Spectroscopy, Volume 3", edited by P.C. Jurs. Plenum Press, New York, 1992. [Pg.381]

The Fe(lll)-azide-precursor and the photolysed product were characterized by NIS spectroscopy coupled to detailed DFT calculations [63]. The result of the study provides additional evidence in favor of a low-spin 5=1/2 ground state of the Fe(V)-nitrido complex. Here we show how first-principles calculations assist in quantitative analysis of experimental NIS data for the Fe(lll)-azide complex. [Pg.189]


See other pages where Spectroscopy quantitative analysis is mentioned: [Pg.744]    [Pg.586]    [Pg.288]    [Pg.744]    [Pg.586]    [Pg.288]    [Pg.34]    [Pg.306]    [Pg.309]    [Pg.389]    [Pg.395]    [Pg.486]    [Pg.56]    [Pg.310]    [Pg.284]    [Pg.65]    [Pg.48]    [Pg.24]    [Pg.144]    [Pg.416]    [Pg.418]    [Pg.522]    [Pg.367]    [Pg.422]    [Pg.634]    [Pg.317]    [Pg.364]    [Pg.218]   
See also in sourсe #XX -- [ Pg.60 , Pg.61 , Pg.62 , Pg.63 , Pg.64 ]




SEARCH



Analysis spectroscopy

Spectroscopy quantitative

© 2024 chempedia.info