Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectroscopic techniques mass spectroscopy

Air Monitoring. The atmosphere in work areas is monitored for worker safety. Volatile amines and related compounds can be detected at low concentrations in the air by a number of methods. Suitable methods include chemical, chromatographic, and spectroscopic techniques. For example, the NIOSH Manual of Analytical Methods has methods based on gas chromatography which are suitable for common aromatic and aHphatic amines as well as ethanolamines (67). Aromatic amines which diazotize readily can also be detected photometrically using a treated paper which changes color (68). Other methods based on infrared spectroscopy (69) and mass spectroscopy (70) have also been reported. [Pg.264]

The interface properties can usually be independently measured by a number of spectroscopic and surface analysis techniques such as secondary ion mass spectroscopy (SIMS), X-ray photoelectron spectroscopy (XPS), specular neutron reflection (SNR), forward recoil spectroscopy (FRES), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), infrared (IR) and several other methods. Theoretical and computer simulation methods can also be used to evaluate H t). Thus, we assume for each interface that we have the ability to measure H t) at different times and that the function is well defined in terms of microscopic properties. [Pg.354]

Mass spectrometry, infrared spectroscopy, and nuclear magnetic resonance spectroscopy are techniques of structure determination applicable to all organic molecules. In addition to these three generally useful methods, there s a fourth—ultraviolet (UV) spectroscopy—that is applicable only to conjugated systems. UV is less commonly used than the other three spectroscopic techniques because of the specialized information it gives, so we ll mention it only briefly. [Pg.500]

Mass spectroscopy is a useful technique for the characterization of dendrimers because it can be used to determine relative molar mass. Also, from the fragmentation pattern, the details of the monomer assembly in the branches can be confirmed. A variety of mass spectroscopic techniques have been used for this, including electron impact, fast atom bombardment and matrix-assisted laser desorption ionization (MALDI) mass spectroscopy. [Pg.138]

Perhaps the most revolutionary development has been the application of on-line mass spectroscopic detection for compositional analysis. Polymer composition can be inferred from column retention time or from viscometric and other indirect detection methods, but mass spectroscopy has reduced much of the ambiguity associated with that process. Quantitation of end groups and of co-polymer composition can now be accomplished directly through mass spectroscopy. Mass spectroscopy is particularly well suited as an on-line GPC technique, since common GPC solvents interfere with other on-line detectors, including UV-VIS absorbance, nuclear magnetic resonance and infrared spectroscopic detectors. By contrast, common GPC solvents are readily adaptable to mass spectroscopic interfaces. No detection technique offers a combination of universality of analyte detection, specificity of information, and ease of use comparable to that of mass spectroscopy. [Pg.375]

The objective of this study is to investigate the mechanism of propylene oxidation by a transient infrared spectroscopic technique over Rh/Al203. This technique allows simultaneous measurement of the dynamics of adsorbed species by in situ infrared spectroscopy and the product formation profile by mass spectrometry. [Pg.404]

Several modem analytical instruments are powerful tools for the characterisation of end groups. Molecular spectroscopic techniques are commonly employed for this purpose. Nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy and mass spectrometry (MS), often in combination, can be used to elucidate the end group structures for many polymer systems more traditional chemical methods, such as titration, are still in wide use, but employed more for specific applications, for example, determining acid end group levels. Nowadays, NMR spectroscopy is usually the first technique employed, providing the polymer system is soluble in organic solvents, as quantification of the levels of... [Pg.172]

Modern spectroscopy plays an important role in pharmaceutical analysis. Historically, spectroscopic techniques such as infrared (IR), nuclear magnetic resonance (NMR), and mass spectrometry (MS) were used primarily for characterization of drug substances and structure elucidation of synthetic impurities and degradation products. Because of the limitation in specificity (spectral and chemical interference) and sensitivity, spectroscopy alone has assumed a much less important role than chromatographic techniques in quantitative analytical applications. However, spectroscopy offers the significant advantages of simple sample preparation and expeditious operation. [Pg.265]

X-ray diffraction is not the only spectroscopic technique to determine geometries of different modifications. The range of options includes IR and UV studies as well as NMR and mass spectroscopy [34],... [Pg.42]

In the present study the surface chemistry of birnessite and of birnessite following the interaction with aqueous solutions of cobalt(II) and cobalt(III) amine complexes as a function of pH has been investigated using two surface sensitive spectroscopic techniques. X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). The significant contribution that such an investigation can provide rests in the information obtained regarding the chemical nature of the neat metal oxide and of the metal oxide/metal ion adsorbate surfaces, within about the top 50 of the material surface. The chemical... [Pg.504]

The few examples presented below in this section and the rest of the chapter point to various properties that can be investigated by NMR spectroscopy. Table 5 presents data on the atomic mass and nuclear spin of elements that are relevant to the MS and NMR spectroscopic techniques applied to organic and some organometalhc compounds. [Pg.343]

Other spectroscopic techniques used to characterize iron oxides are photoelectron (PS), X-ray absorption (XAS), nuclear magnetic resonance (NMR) (Broz et ah, 1987), Auger (AES) (Seo et ah, 1975 Kamrath et ah, 1990 Seioghe et ah 1999), electron loss (EELS)), secondary ion mass (SIMS) and electron spin resonance (ESR) spectroscopy (Gehring et ah, 1990, Gehring Hofmeister, 1994) (see Tab. 7.8). Most of these tech-... [Pg.168]

The hyphenation of capillary electromigration techniques to spectroscopic techniques which, besides the identification, allow the elucidation of the chemical structure of the separated analytes, such as mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR) has been widely pursued in recent years. Such approaches, combining the separation efficiency of capillary electromigration techniques and the information-rich detection capability of either MS or NMR, are emerging as essential diagnostic tools for the analysis of both low molecular weight and macromolecular compounds. [Pg.170]

Major parf of analytical chemisfry is relafed to different spectroscopic techniques. In optical spectroscopy, ILs are already used as solvents for wide range of solutes to study their properties and behavior in conditions not available with organic solvents. ILs have their limits regarding the transparency, but knowing that many other limits are shifted far away. The use of ILs as solvents does not preclude the application of NMR techniques. After careful parameter adjustment, virtually all standard and advanced NMR techniques can be applied. The same can be said about mass spectrometry, which has a great potential to get a key method in almost all fields of IL research, including analytical applications with IL as necessary component to get good result. [Pg.399]

Numerous analyses in the quality control of most kinds of samples occurring in the flavour industry are done by different chromatographic procedures, for example gas chromatography (GC), high-pressure liquid chromatography (fiPLC) and capillary electrophoresis (CE). Besides the different IR methods mentioned already, further spectroscopic techniques are used, for example nuclear magnetic resonance, ultraviolet spectroscopy, mass spectroscopy (MS) and atomic absorption spectroscopy. In addition, also in quality control modern coupled techniques like GC-MS, GC-Fourier transform IR spectroscopy, HPLC-MS and CE-MS are gaining more and more importance. [Pg.306]

Tunable laser spectroscopic techniques such as laser-induced fluorescence (LIF) or resonantly enhanced multi-photon ionization (REMPI) are well-established mature fields in gas-phase spectroscopy and dynamics, and their application to gas-surface dynamics parallels their use elsewhere. The advantage of these techniques is that they can provide exceedingly sensitive detection, perhaps more so than mass spectrometers. In addition, they are detectors of individual quantum states and hence can measure nascent internal state population distributions produced via the gas-surface dynamics. The disadvantage of these techniques is that they are not completely general. Only some interesting molecules have spectroscopy amenable to be detected sensitively in this fashion, e.g., H2, N2, NO, CO, etc. Other interesting molecules, e.g. 02, CH4, etc., do not have suitable spectroscopy. However, when applicable, the laser spectroscopic techniques are very powerful. [Pg.174]

The development of modern spectroscopic techniques (IR, NMR, mass spectroscopy), in addition to facilitating the characterization of deuterium-labeled products, has also helped to establish a demand for these compounds. Mass spectroscopy, for example, played an important role in the history of deuterium, beginning with the discovery of hydrogen isotopes in 1931.172... [Pg.344]


See other pages where Spectroscopic techniques mass spectroscopy is mentioned: [Pg.92]    [Pg.811]    [Pg.92]    [Pg.811]    [Pg.157]    [Pg.442]    [Pg.559]    [Pg.145]    [Pg.146]    [Pg.244]    [Pg.44]    [Pg.480]    [Pg.24]    [Pg.46]    [Pg.302]    [Pg.330]    [Pg.705]    [Pg.676]    [Pg.8]    [Pg.1485]    [Pg.20]    [Pg.158]    [Pg.10]    [Pg.123]    [Pg.325]    [Pg.260]    [Pg.246]    [Pg.17]    [Pg.138]    [Pg.231]    [Pg.100]    [Pg.596]    [Pg.39]    [Pg.110]    [Pg.82]    [Pg.314]   
See also in sourсe #XX -- [ Pg.317 , Pg.319 , Pg.320 ]




SEARCH



Mass spectroscopic technique

Mass spectroscopy

Spectroscopic Spectroscopy

Spectroscopic techniques

Spectroscopic techniques spectroscopy

Spectroscopy techniques

© 2024 chempedia.info