Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectroscopic Spectroscopy

EXAFS Extended X-ray absorption fine structure spectroscopy. A spectroscopic technique which can determine interatomic distances very precisely. [Pg.170]

The attachment of pyrene or another fluorescent marker to a phospholipid or its addition to an insoluble monolayer facilitates their study via fluorescence spectroscopy [163]. Pyrene is often chosen due to its high quantum yield and spectroscopic sensitivity to the polarity of the local environment. In addition, one of several amphiphilic quenching molecules allows measurement of the pyrene lateral diffusion in the mono-layer via the change in the fluorescence decay due to the bimolecular quenching reaction [164,165]. [Pg.128]

Electronic spectra of surfaces can give information about what species are present and their valence states. X-ray photoelectron spectroscopy (XPS) and its variant, ESC A, are commonly used. Figure VIII-11 shows the application to an A1 surface and Fig. XVIII-6, to the more complicated case of Mo supported on TiOi [37] Fig. XVIII-7 shows the detection of photochemically produced Br atoms on Pt(lll) [38]. Other spectroscopies that bear on the chemical state of adsorbed species include (see Table VIII-1) photoelectron spectroscopy (PES) [39-41], angle resolved PES or ARPES [42], and Auger electron spectroscopy (AES) [43-47]. Spectroscopic detection of adsorbed hydrogen is difficult, and... [Pg.690]

Electrons, protons and neutrons and all other particles that have s = are known as fennions. Other particles are restricted to s = 0 or 1 and are known as bosons. There are thus profound differences in the quantum-mechanical properties of fennions and bosons, which have important implications in fields ranging from statistical mechanics to spectroscopic selection mles. It can be shown that the spin quantum number S associated with an even number of fennions must be integral, while that for an odd number of them must be half-integral. The resulting composite particles behave collectively like bosons and fennions, respectively, so the wavefunction synnnetry properties associated with bosons can be relevant in chemical physics. One prominent example is the treatment of nuclei, which are typically considered as composite particles rather than interacting protons and neutrons. Nuclei with even atomic number tlierefore behave like individual bosons and those with odd atomic number as fennions, a distinction that plays an important role in rotational spectroscopy of polyatomic molecules. [Pg.30]

It should be emphasized that isomerization is by no means the only process involving chemical reactions in which spectroscopy plays a key role as an experimental probe. A very exciting topic of recent interest is the observation and computation [73, 74] of the spectral properties of the transition state [6]—catching a molecule in the act as it passes the point of no return from reactants to products. Furthennore, it has been discovered from spectroscopic observation [75] that molecules can have motions that are stable for long times even above the barrier to reaction. [Pg.74]

Spectroscopy is the most important experimental source of infomiation on intemiolecular interactions. A wide range of spectroscopic teclmiques is being brought to bear on the problem of weakly bound or van der Waals complexes [94, 95]. Molecular beam microwave spectroscopy, pioneered by Klemperer and refined by Flygare, has been used to detemiine the microwave spectra of a large number of weakly bound complexes and obtain stmctiiral infomiation... [Pg.200]

Section BT1.2 provides a brief summary of experimental methods and instmmentation, including definitions of some of the standard measured spectroscopic quantities. Section BT1.3 reviews some of the theory of spectroscopic transitions, especially the relationships between transition moments calculated from wavefiinctions and integrated absorption intensities or radiative rate constants. Because units can be so confusing, numerical factors with their units are included in some of the equations to make them easier to use. Vibrational effects, die Franck-Condon principle and selection mles are also discussed briefly. In the final section, BT1.4. a few applications are mentioned to particular aspects of electronic spectroscopy. [Pg.1119]

There are two fimdamental types of spectroscopic studies absorption and emission. In absorption spectroscopy an atom or molecule in a low-lying electronic state, usually the ground state, absorbs a photon to go to a higher state. In emission spectroscopy the atom or molecule is produced in a higher electronic state by some excitation process, and emits a photon in going to a lower state. In this section we will consider the traditional instrumentation for studying the resulting spectra. They define the quantities measured and set the standard for experimental data to be considered. [Pg.1120]

Some other extremely iisellil spectroscopic teclmiques will only be mentioned here. Probably the most important one is spectroscopy in free jet expansions. Small molecules have often been studied by gas-phase spectroscopy where sharp rotational and vibrational structure gives detailed iufonnation about molecular... [Pg.1124]

A number of mixing experiments have therefore been used to generate both pulses and CW THz radiation. Among these, diode-based mixers used as upconvertors (that is, heterodyne spectroscopy m reverse ) have been the workliorse FIR instruments. Two such teclmiques have produced the bulk of the spectroscopic results ... [Pg.1247]

Time-of-flight mass spectrometers have been used as detectors in a wider variety of experiments tlian any other mass spectrometer. This is especially true of spectroscopic applications, many of which are discussed in this encyclopedia. Unlike the other instruments described in this chapter, the TOP mass spectrometer is usually used for one purpose, to acquire the mass spectrum of a compound. They caimot generally be used for the kinds of ion-molecule chemistry discussed in this chapter, or structural characterization experiments such as collision-induced dissociation. Plowever, they are easily used as detectors for spectroscopic applications such as multi-photoionization (for the spectroscopy of molecular excited states) [38], zero kinetic energy electron spectroscopy [39] (ZEKE, for the precise measurement of ionization energies) and comcidence measurements (such as photoelectron-photoion coincidence spectroscopy [40] for the measurement of ion fragmentation breakdown diagrams). [Pg.1354]

As discussed in more detail elsewhere in this encyclopaedia, many optical spectroscopic methods have been developed over the last century for the characterization of bulk materials. In general, optical spectroscopies make use of the interaction of electromagnetic radiation with matter to extract molecular parameters from the substances being studied. The methods employed usually rely on the examination of the radiation absorbed. [Pg.1778]

Amongst other spectroscopic teclmiques which have successfiilly been employed in situ in electrochemical investigations are ESR, which is used to investigate electrochemical processes involving paramagnetic molecules, Raman spectroscopy and ellipsometry. [Pg.1949]

The pyrolysis of CR NH (<1 mbar) was perfomied at 1.3 atm in Ar, spectroscopically monitoring the concentration of NH2 radicals behind the reflected shock wave as a fiinction of time. The interesting aspect of this experiment was the combination of a shock-tube experiment with the particularly sensitive detection of the NH2 radicals by frequency-modulated, laser-absorption spectroscopy [ ]. Compared with conventional narrow-bandwidth laser-absorption detection the signal-to-noise ratio could be increased by a factor of 20, with correspondingly more accurate values for the rate constant k T). [Pg.2125]

Van der Waals complexes can be observed spectroscopically by a variety of different teclmiques, including microwave, infrared and ultraviolet/visible spectroscopy. Their existence is perhaps the simplest and most direct demonstration that there are attractive forces between stable molecules. Indeed the spectroscopic properties of Van der Waals complexes provide one of the most detailed sources of infonnation available on intennolecular forces, especially in the region around the potential minimum. The measured rotational constants of Van der Waals complexes provide infonnation on intennolecular distances and orientations, and the frequencies of bending and stretching vibrations provide infonnation on how easily the complex can be distorted from its equilibrium confonnation. In favourable cases, the whole of the potential well can be mapped out from spectroscopic data. [Pg.2439]

Far-infrared and mid-infrared spectroscopy usually provide the most detailed picture of the vibration-rotation energy levels in the ground electronic state. However, they are not always possible and other spectroscopic methods are also important. [Pg.2447]


See other pages where Spectroscopic Spectroscopy is mentioned: [Pg.165]    [Pg.6232]    [Pg.6491]    [Pg.165]    [Pg.6232]    [Pg.6491]    [Pg.9]    [Pg.310]    [Pg.128]    [Pg.203]    [Pg.559]    [Pg.12]    [Pg.80]    [Pg.253]    [Pg.1122]    [Pg.1136]    [Pg.1190]    [Pg.1196]    [Pg.1255]    [Pg.1255]    [Pg.1264]    [Pg.1265]    [Pg.1270]    [Pg.1547]    [Pg.1623]    [Pg.1625]    [Pg.1716]    [Pg.1868]    [Pg.1968]    [Pg.2060]    [Pg.2090]    [Pg.2116]    [Pg.2126]    [Pg.2440]    [Pg.2447]    [Pg.2449]    [Pg.2450]   
See also in sourсe #XX -- [ Pg.15 , Pg.134 , Pg.137 , Pg.165 , Pg.178 ]

See also in sourсe #XX -- [ Pg.41 , Pg.43 , Pg.52 , Pg.86 , Pg.107 , Pg.238 ]




SEARCH



Electronic absorption spectroscopy bonding, excited-state spectroscopic

Infrared spectroscopy compared with Raman spectroscop

Infrared spectroscopy spectroscopic methods

Near-infrared spectroscop spectroscopy

Nuclear magnetic resonance spectroscop Spectroscopy

Resonance Raman spectroscopy excited-state spectroscopic probes

Spectroscopic Methods Nuclear Spectroscopy

Spectroscopic characterization of CNTs Raman spectroscopy

Spectroscopic chemiluminescence spectroscopy

Spectroscopic fluorescence spectroscopy

Spectroscopic imaging techniques Raman spectroscopy

Spectroscopic imaging with Raman spectroscopy

Spectroscopic methods Auger-electron-spectroscopy

Spectroscopic methods Raman spectroscopy

Spectroscopic methods reflectance spectroscopy

Spectroscopic methods spectroscopy

Spectroscopic studies Mossbauer spectroscopy

Spectroscopic studies vibrational spectroscopy

Spectroscopic studies, lead absorption spectroscopy

Spectroscopic studies, lead photoelectron spectroscopy

Spectroscopic techniques mass spectroscopy

Spectroscopic techniques spectroscopy

Spectroscopy spectroscopic ellipsometry

© 2024 chempedia.info