Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectroscopic techniques spectroscopy

We discussed amply the notion of bonds in a molecule. How do we know that a molecule has indeed specific bonds like C—H, CM3, C=0, or Fe—C We also argued with certitude that molecules have specific geometries or 3D shapes with specific bond angles. Can we actually see these 3D shapes How can we tell the actual values of bond angles and bond lengths in a molecule What about the total mass of the molecule Can we actually weigh molecules The answer to all these questions and many others is, yes, we can by means of spectroscopic techniques. Spectroscopy in a broad sense encompasses the interaction of matter (molecules) with radiation and other energy sources (e.g., bombardment by electrons, neutrons, etc.). [Pg.288]

EXAFS Extended X-ray absorption fine structure spectroscopy. A spectroscopic technique which can determine interatomic distances very precisely. [Pg.170]

In the second broad class of spectroscopy, the electromagnetic radiation undergoes a change in amplitude, phase angle, polarization, or direction of propagation as a result of its refraction, reflection, scattering, diffraction, or dispersion by the sample. Several representative spectroscopic techniques are listed in Table 10.2. [Pg.374]

Slavin, W. A Gomparison of Atomic Spectroscopic Analytical Techniques, Spectroscopy 1991, 6, 16-21. [Pg.459]

Air Monitoring. The atmosphere in work areas is monitored for worker safety. Volatile amines and related compounds can be detected at low concentrations in the air by a number of methods. Suitable methods include chemical, chromatographic, and spectroscopic techniques. For example, the NIOSH Manual of Analytical Methods has methods based on gas chromatography which are suitable for common aromatic and aHphatic amines as well as ethanolamines (67). Aromatic amines which diazotize readily can also be detected photometrically using a treated paper which changes color (68). Other methods based on infrared spectroscopy (69) and mass spectroscopy (70) have also been reported. [Pg.264]

Measuring Protein Sta.bihty, Protein stabihty is usually measured quantitatively as the difference in free energy between the folded and unfolded states of the protein. These states are most commonly measured using spectroscopic techniques, such as circular dichroic spectroscopy, fluorescence (generally tryptophan fluorescence) spectroscopy, nmr spectroscopy, and absorbance spectroscopy (10). For most monomeric proteins, the two-state model of protein folding can be invoked. This model states that under equihbrium conditions, the vast majority of the protein molecules in a solution exist in either the folded (native) or unfolded (denatured) state. Any kinetic intermediates that might exist on the pathway between folded and unfolded states do not accumulate to any significant extent under equihbrium conditions (39). In other words, under any set of solution conditions, at equihbrium the entire population of protein molecules can be accounted for by the mole fraction of denatured protein, and the mole fraction of native protein,, ie. [Pg.200]

The objective ia any analytical procedure is to determine the composition of the sample (speciation) and the amounts of different species present (quantification). Spectroscopic techniques can both identify and quantify ia a single measurement. A wide range of compounds can be detected with high specificity, even ia multicomponent mixtures. Many spectroscopic methods are noninvasive, involving no sample collection, pretreatment, or contamination (see Nondestructive evaluation). Because only optical access to the sample is needed, instmments can be remotely situated for environmental and process monitoring (see Analytical METHODS Process control). Spectroscopy provides rapid real-time results, and is easily adaptable to continuous long-term monitoring. Spectra also carry information on sample conditions such as temperature and pressure. [Pg.310]

The spectroscopic techniques that have been most frequently used to investigate biomolecular dynamics are those that are commonly available in laboratories, such as nuclear magnetic resonance (NMR), fluorescence, and Mossbauer spectroscopy. In a later chapter the use of NMR, a powerful probe of local motions in macromolecules, is described. Here we examine scattering of X-ray and neutron radiation. Neutrons and X-rays share the property of being found in expensive sources not commonly available in the laboratory. Neutrons are produced by a nuclear reactor or spallation source. X-ray experiments are routinely performed using intense synclirotron radiation, although in favorable cases laboratory sources may also be used. [Pg.238]

At T < tunneling occurs not only in irreversible chemical reactions, but also in spectroscopic splittings. Tunneling eliminates degeneracy and gives rise to tunneling multiplets, which can be detected with various spectroscopic techniques, from inelastic neutron scattering to optical and microwave spectroscopy. The most illustrative examples of this sort are the inversion of the... [Pg.5]

Solid state NMR is a relatively recent spectroscopic technique that can be used to uniquely identify and quantitate crystalline phases in bulk materials and at surfaces and interfaces. While NMR resembles X-ray diffraction in this capacity, it has the additional advantage of being element-selective and inherently quantitative. Since the signal observed is a direct reflection of the local environment of the element under smdy, NMR can also provide structural insights on a molecularlevel. Thus, information about coordination numbers, local symmetry, and internuclear bond distances is readily available. This feature is particularly usefrd in the structural analysis of highly disordered, amorphous, and compositionally complex systems, where diffraction techniques and other spectroscopies (IR, Raman, EXAFS) often fail. [Pg.460]

With this as background, we will now discuss spectroscopic techniques individually. NMR, IR, and UV-VIS spectroscopy provide complementary information, and all are useful. Among them, NMR provides the information that is most directly related to molecular- structure and is the one we ll examine first. [Pg.521]

Nuclear magnetic resonance (NMR) spectroscopy is the most valuable spectroscopic technique available to organic chemists. It s the method of structure determination that organic chemists turn to first. [Pg.440]

Mass spectrometry, infrared spectroscopy, and nuclear magnetic resonance spectroscopy are techniques of structure determination applicable to all organic molecules. In addition to these three generally useful methods, there s a fourth—ultraviolet (UV) spectroscopy—that is applicable only to conjugated systems. UV is less commonly used than the other three spectroscopic techniques because of the specialized information it gives, so we ll mention it only briefly. [Pg.500]

As a prelude to the discussion it is necessary to consider the definition of orientation in terms of the Euler angles, and the definition ofan orientation distribution function in terms ofan expansion ofLegendre functions. These definitions set the scene for examining the information which can be obtained from different spectroscopic techniques. In this review, infra-red and Raman spectroscopy and nuclear magnetic resonance, will be considered. [Pg.81]

In this review the definition of orientation and orientation functions or orientation averages will be considered in detail. This will be followed by a comprehensive account of the information which can be obtained by three spectroscopic techniques, infra-red and Raman spectroscopy and broad line nuclear magnetic resonance. The use of polarized fluorescence will not be discussed here, but is the subject of a contemporary review article by the author and J. H. Nobbs 1. The present review will be completed by consideration of the information which has been obtained on the development of molecular orientation in polyethylene terephthalate and poly(tetramethylene terephthalate) where there are also clearly defined changes in the conformation of the molecule. In this paper, particular attention will be given to the characterization of biaxially oriented films. Previous reviews of this subject have been given by the author and his colleagues, but have been concerned with discussion of results for uniaxially oriented systems only2,3). [Pg.83]

The most appropriate experimental procedure is to treat the metal in UHV, controlling the state of the surface with spectroscopic techniques (low-energy electron diffraction, LEED atomic emission spectroscopy, AES), followed by rapid and protected transfer into the electrochemical cell. This assemblage is definitely appropriate for comparing UHV and electrochemical experiments. However, the effect of the contact with the solution must always be checked, possibly with a backward transfer. These aspects are discussed in further detail for specific metals later on. [Pg.21]

Another spectroscopic technique, high-resolution electron energy loss spectroscopy (HREELS), has been used by Wagner and Moylan211 in combination with cyclic voltammetry to estimate ffs0of a Pt(lll) electrode from the reaction of H30+ formation. [Pg.41]

Frequently, electrochemical information can be interpreted better in the presence of additional nonelectrochemical information. Typically, however, there is one significant restriction electrochemical and spectroscopic techniques often do not detect exactly the same mechanisms. With spectroscopic measurements (e.g., infrared spectroscopy), products that are formed by electrochemical processes may be detected. In other cases (luminescence techniques) mechanisms may be found by which charge carriers are trapped and recombine. Other techniques (electroreflection studies) allow the nature of electronic transitions to be determined and provide information on the presence or absence of an electric field in the surface of an electrode. With no traditional technique, however, is it... [Pg.435]

Abstract The basic principles of astronomical spectroscopy are introduced and the main types of dispersing element surveyed. The principles behind two modem spectroscopic techniques, multiple object and integral held spectroscopy, are also discussed. [Pg.155]

Mass spectroscopy is a useful technique for the characterization of dendrimers because it can be used to determine relative molar mass. Also, from the fragmentation pattern, the details of the monomer assembly in the branches can be confirmed. A variety of mass spectroscopic techniques have been used for this, including electron impact, fast atom bombardment and matrix-assisted laser desorption ionization (MALDI) mass spectroscopy. [Pg.138]

Vibrational spectroscopy and in particular Raman spectroscopy is by far the most useful spectroscopic technique to qualitatively characterize polysulfide samples. The fundamental vibrations of the polysulfide dianions with between 4 and 8 atoms have been calculated by Steudel and Schuster [96] using force constants derived partly from the vibrational spectra of NayS4 and (NH4)2Ss and partly from cydo-Sg. It turned out that not only species of differing molecular size but also rotational isomers like Ss of either Cy or Cs symmetry can be recognized from pronounced differences in their spectra. The latter two anions are present, for instance, in NaySg (Cs) and KySg (Cy), respectively (see Table 2). [Pg.142]


See other pages where Spectroscopic techniques spectroscopy is mentioned: [Pg.16]    [Pg.16]    [Pg.9]    [Pg.310]    [Pg.203]    [Pg.559]    [Pg.1623]    [Pg.1868]    [Pg.468]    [Pg.1]    [Pg.17]    [Pg.410]    [Pg.394]    [Pg.398]    [Pg.52]    [Pg.743]    [Pg.194]    [Pg.163]    [Pg.145]    [Pg.153]    [Pg.12]    [Pg.244]    [Pg.133]    [Pg.44]    [Pg.45]    [Pg.119]    [Pg.338]    [Pg.178]    [Pg.137]    [Pg.54]   
See also in sourсe #XX -- [ Pg.52 , Pg.53 , Pg.54 , Pg.55 , Pg.56 , Pg.57 , Pg.58 , Pg.59 , Pg.60 , Pg.61 , Pg.62 , Pg.63 , Pg.64 , Pg.65 , Pg.66 , Pg.67 , Pg.68 ]




SEARCH



Spectroscopic Spectroscopy

Spectroscopic imaging techniques Raman spectroscopy

Spectroscopic techniques

Spectroscopic techniques mass spectroscopy

Spectroscopy techniques

© 2024 chempedia.info