Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvents mass transport

Transfer coefficient of the cathodic partial reaction of an electrochemical process Dielectric constant of the solvent Mass-transport correction, defined by Eq. (13) Stoichiometric number of the reaction mechanism Potential at the outer Helmholtz plane relative to the potential of the bulk solution (V)... [Pg.186]

Various types of detector tubes have been devised. The NIOSH standard number S-311 employs a tube filled with 420—840 p.m (20/40 mesh) activated charcoal. A known volume of air is passed through the tube by either a handheld or vacuum pump. Carbon disulfide is used as the desorbing solvent and the solution is then analyzed by gc using a flame-ionization detector (88). Other adsorbents such as siUca gel and desorbents such as acetone have been employed. Passive (diffuse samplers) have also been developed. Passive samplers are useful for determining the time-weighted average (TWA) concentration of benzene vapor (89). Passive dosimeters allow permeation or diffusion-controlled mass transport across a membrane or adsorbent bed, ie, activated charcoal. The activated charcoal is removed, extracted with solvent, and analyzed by gc. Passive dosimeters with instant readout capabiUty have also been devised (85). [Pg.46]

The results from EQCM studies on conducting polymer films can be ambiguous because the measured mass change results from a combination of independent ion transport, coupled ion transport (i.e., salt transport), and solvent transport. In addition, changes in the viscoelasticity of the films can cause apparent mass changes. The latter problem can be minimized by checking the frequency response of the EQCM,174 while the various mass transport components can be separated by careful data analysis.175,176... [Pg.578]

The majority of RDC studies have concentrated on the measurement of solute transfer resistances, in particular, focusing on their relevance as model systems for drug transfer across skin [14,39-41]. In these studies, isopropyl myristate is commonly used as a solvent, since it is considered to serve as a model compound for skin lipids. However, it has since been reported that the true interfacial kinetics cannot be resolved with the RDC due to the severe mass transport limitations inherent in the technique [15]. The RDC has also been used to study more complicated interfacial processes such as kinetics in a microemulsion system [42], where one of the compartments contains an emulsion. [Pg.340]

A growing-drop method has been reported [53] for measuring interfacial liquid-liquid reactions, in which mass transport to the growing drop was considered to be well-defined and calculable. This approach was applied to study the kinetics of the solvent extraction of cupric ions by complexing ligands. [Pg.343]

A significant advance was made in this field by Watarai and Freiser [58], who developed a high-speed automatic system for solvent extraction kinetic studies. The extraction vessel was a 200 mL Morton flask fitted with a high speed stirrer (0-20,000 rpm) and a teflon phase separator. The mass transport rates generated with this approach were considered to be sufficiently high to effectively outrun the kinetics of the chemical processes of interest. With the aid of the separator, the bulk organic phase was cleanly separated from a fine dispersion of the two phases in the flask, circulated through a spectrophotometric flow cell, and returned to the reaction vessel. [Pg.343]

Much LC-MS work is carried out in a qualitative or semi-quantitative mode. Development of quantitative LC-MS procedures for polymer/additive analysis is gaining attention. When accurate quantitation is necessary, it is important to understand in depth the experimental factors which influence the quantitative response of the entire LC-MS system. These factors, which include solvent composition, solvent flow-rate, and the presence of co-eluting species, exert a major influence on analyte mass transport and ionisation efficiency. Analyte responses in MS procedures can be significantly affected by the nature of the organic modifier used in the RPLC... [Pg.512]

To summarize, the hydration status of the drug molecule and other components of a pharmaceutical formulation can affect mass transport. Solubility of drug crystals in an aqueous or nonaqueous solvent may depend on the presence or absence of moisture associated with the drug. Hydration may also determine the hydrodynamic radii of molecules. This may affect the frictional resistance and therefore the diffusion coefficient of the drug molecules. Diffusion of drugs in polymeric systems may also be influenced by the percent hydration of the polymers. This is especially tme for hydrogel polymers. Finally, hydration of... [Pg.616]

Remarkably, the use of a fluorous biphasic solvent system in combination with a [Rh(NBD)(DPPE)]+-type catalyst (NBD = norbornadiene) copolymerized into a porous nonfluorous ethylene dimethacrylate polymer, resulted in an increased activity of the catalyst relative to a situation when only toluene was used as solvent [30]. The results were explained by assuming that fluorophobicity of the substrate (methyl-trans-cinnamate) leads to a relatively higher local substrate concentration inside the cavities of the polymer when the fluorous solvent is used. That is, the polymer could be viewed as a better solvent than the fluorous solvent system. This interpretation was supported by the observations that (i) the increase in activity correlates linearly with the volume fraction of fluorous solvent (PFMCH) and (ii) the porous ethylene dimethacrylate polymer by itself lowers the concentration of decane in PFMCH from 75 mM to 50 mM, corresponding to a 600 mM local concentration of decane in the polymer. Gas to liquid mass transport limitation of dihydrogen could be mled out as a possible cause. [Pg.1384]

Let us consider the transport of one component i in a liquid solution. Any disequilibration in the solution is assumed to be due to macroscopic motion of the liquid (i.e. flow) and to gradients in the concentration c,. Temperature gradients are assumed to be negligible. The transport of the solute i is then governed by two different modes of transport, namely, molecular diffusion through the solvent medium, and drag by the moving liquid. The combination of these two types of transport processes is usually denoted as the convective diffusion of the solute in the liquid [25] or diffusion-advection mass transport [48,49], The relative contribution of advection to total transport is characterised by the nondimensional Peclet number [32,48,49], while the relative increase in transport over pure diffusion due to advection is Sh - 1, where Sh is the nondimensional Sherwood number [28,32,33,49,50]. [Pg.129]

The Hl value is reduced by an increase in the viscosity of the solvent or by a decrease in the temperature. Longitudinal diffusion can thus be reduced by decreasing the diffusion coefficient and increasing the flow rate however, these two actions are counter-effective in liquid chromatography because of the mass transport term. [Pg.103]

UMEs decrease the effects of non-Earadaic currents and of the iR drop. At usual timescales, diffusional transport becomes stationary after short settling times, and the enhanced mass transport leads to a decrease of reaction effects. On the other hand, in voltammetry very high scan rates (i up to 10 Vs ) become accessible, which is important for the study of very fast chemical steps. For organic reactions, minimization of the iR drop is of practical value and highly nonpolar solvents (e.g. benzene or hexane [8]) have been used with low or vanishing concentrations of supporting electrolyte. In scanning electrochemical microscopy (SECM [70]), the small size of UMEs is exploited to locahze electrode processes in the gm scale. [Pg.20]

The study of electrosynthetic reactions is not a new phenomenon. Such reactions have been the study of investigation for more than a century and a half since Faraday first noted the evolution of ethane from the electrolysis of aqueous acetate solutions. This reaction is more well known as the Kolbe electrolysis [51]. Since the report of Kolbe, chemists have had to wait nearly a century until the development, in the 1960 s, of organic solvents with high-dielectric which have been able to vastly increase the scope of systems that could be studied [52]. Added to this more recently is the synergistic effect that ultrasound should be able to offer in the improvement of the expected reactions by virtue of its ability to clean of surfaces, form fresh surfaces and improve mass transport (which may involve different kinetic and thermodynamic requirements)... [Pg.249]

Table 10.4 gives critical data for the most common solvents used in high-pressure extraction. Table 10.5 illustrates the favorable mass transport properties that can be achieved in the supercritical area owing to a low viscosity and a high diffusivity, compared with the liquid phase. [Pg.450]


See other pages where Solvents mass transport is mentioned: [Pg.1933]    [Pg.507]    [Pg.226]    [Pg.339]    [Pg.12]    [Pg.162]    [Pg.224]    [Pg.225]    [Pg.597]    [Pg.80]    [Pg.212]    [Pg.113]    [Pg.458]    [Pg.36]    [Pg.115]    [Pg.227]    [Pg.34]    [Pg.53]    [Pg.153]    [Pg.217]    [Pg.1377]    [Pg.27]    [Pg.14]    [Pg.123]    [Pg.88]    [Pg.88]    [Pg.169]    [Pg.229]    [Pg.471]    [Pg.71]    [Pg.429]    [Pg.424]    [Pg.21]    [Pg.176]    [Pg.107]    [Pg.145]    [Pg.23]   
See also in sourсe #XX -- [ Pg.9 ]

See also in sourсe #XX -- [ Pg.9 ]




SEARCH



Mass transport

Solvent transport

© 2024 chempedia.info