Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solid temperature effects

Generally speaking, temperature control in fixed beds is difficult because heat loads vary through the bed. Also, in exothermic reactors, the temperature in the catalyst can become locally excessive. Such hot spots can cause the onset of undesired reactions or catalyst degradation. In tubular devices such as shown in Fig. 2.6a and b, the smaller the diameter of tube, the better is the temperature control. Temperature-control problems also can be overcome by using a mixture of catalyst and inert solid to effectively dilute the catalyst. Varying this mixture allows the rate of reaction in different parts of the bed to be controlled more easily. [Pg.56]

Supercritical Mixtures Dehenedetti-Reid showed that conven-tionaf correlations based on the Stokes-Einstein relation (for hquid phase) tend to overpredict diffusivities in the supercritical state. Nevertheless, they observed that the Stokes-Einstein group D g l/T was constant. Thus, although no general correlation ap es, only one data point is necessaiy to examine variations of fluid viscosity and/or temperature effects. They explored certain combinations of aromatic solids in SFg and COg. [Pg.595]

Use of the term mean-bulk temperature is to define the model from which temperatures are computed. In shock-compression modeling, especially in porous solids, temperatures computed are model dependent and are without definition unless specification of assumptions used in the calculations is given. The term mean-bulk temperature describes a model calculation in which the compressional energy is uniformly distributed throughout the sample without an attempt to specify local effects. In the energy localization case, it is well known that the computed temperatures can vary by an order of magnitude depending on the assumptions used in the calculation. [Pg.151]

The manufacturer must be told the conditions of the liquid, percent suspended solids, physical properties, corrosive nature and maximum and minimum temperature ranges. For extremely hot liquids, special hot pumps must be used, and temperature effects taken into account. [Pg.210]

References to a number of other kinetic studies of the decomposition of Ni(HC02)2 have been given [375]. Erofe evet al. [1026] observed that doping altered the rate of reaction of this solid and, from conductivity data, concluded that the initial step involves electron transfer (HCOO- - HCOO +e-). Fox et al. [118], using particles of homogeneous size, showed that both the reaction rate and the shape of a time curves were sensitive to the mean particle diameter. However, since the reported measurements refer to reactions at different temperatures, it is at least possible that some part of the effects described could be temperature effects. Decomposition of nickel formate in oxygen [60] yielded NiO and C02 only the shapes of the a—time curves were comparable in some respects with those for reaction in vacuum and E = 160 15 kJ mole-1. Criado et al. [1031] used the Prout—Tompkins equation [eqn. (9)] in a non-isothermal kinetic analysis of nickel formate decomposition and obtained E = 100 4 kJ mole-1. [Pg.212]

The enantioselectivity obtained in the hetero-Diels-Alder reaction (Scheme 12) was low (18% ee). This is, in part, due to the important temperature effect. For example, 50% ee was obtained in reactions carried out in homogeneous phase at - 60 °C and 95% ee in reactions at - 78 °C. However, at 0 °C the enantioselectivity dropped to 28% ee, a value closer to that obtained with the immobilized catalyst at the same temperature. Recycling was investigated and the solid was used four times with the same activity maintained. The 6b-Cu(OTf)2 catalyst proved to be less effective for this reaction and less stable in terms of recycling, a situation in agreement with the results obtained with exchanged catalysts [53]. [Pg.183]

Effectively, Eqs. (86) and (87) describe two interpenetrating continua which are thermally coupled. The value of the heat transfer coefficient a depends on the specific shape of the channels considered suitable correlations have been determined for circular or for rectangular channels [100]. In general, the temperature fields obtained from Eqs. (86) and (87) for the solid and the fluid phases are different, in contrast to the assumptions made in most other models for heat transfer in porous media [117]. Kim et al. [118] have used a model similar to that described here to compute the temperature distribution in a micro channel heat sink. They considered various values of the channel width (expressed in dimensionless form as the Darcy number) and various ratios of the solid and fluid thermal conductivity and determined the regimes where major deviations of the fluid temperature from the solid temperature are found. [Pg.195]

This process is similar to the activated sludge process however, it requires a large surface area to cause more temperature effects than that experience in the activated sludge process. The aeration process in this system supplies oxygen to the influent wastewater and the turbulent generated keeps the contents of the basin in suspension. The suspended solids are then removed in a settling tank where the wastewater may further be treated before discharge.23... [Pg.917]

The presence of a solvent, especially water, and/or other additives or impurities, often in nonstoichiometric proportions, may modify the physical properties of a solid, often through impurity defects, through changes in crystal habit (shape) or by lowering the glass transition temperature of an amorphous solid. The effects of water on the solid-state stability of proteins and peptides and the removal of water by lyophilization to produce materials of certain crystallinity are of great practical importance although still imperfectly understood. [Pg.617]

The amount of heat actually taken up by the particles was an important quantity, as tubes operate under heat transfer limited conditions near the tube inlet. Fig. 30 shows a plot of Q against r, where Q was the total energy flow into the solid particles, for the entire segment. For inlet conditions, Q varied strongly at lower r, but was almost constant at higher values. As rcut/rp decreased from 0.95 to 0.0 and the effectiveness factor increased from nearly zero to one, the active solid volume increased by a factor of 7. If the solid temperature had remained the same, the heat sink would also have had to increase sevenfold. This could not be sustained by the heat transfer rate to the particles, so the particle temperature had to decrease. This reduced the heat sink and increased the driving force for heat transfer until a balance was found, which is represented by the curve for the inlet in Fig. 30. [Pg.376]

Temperature effects on solubility products are readily assessed as most solubility reactions are clearly seen as endothermic and disorder increasing. Raising the temperature will thus increase Ksp together with the solubility of the solid. [Pg.47]

How does temperature effect diffusion in solids How do defects influence diffusion in solids ... [Pg.205]

Some of the major areas of activity in this field have been the application of the method to more complex materials, molecular dynamics, [28] and the treatment of excited states. [29] We will deal with some of the new materials in the next section. Two major goals of the molecular dynamics calculations are to determine crystal structures from first principles and to include finite temperature effects. By combining molecular dynamics techniques and ah initio pseudopotentials within the local density approximation, it becomes possible to consider complex, large, and disordered solids. [Pg.262]

Henry s Law constant (i.e., H, see Sect. 2.1.3) expresses the equilibrium relationship between solution concentration of a PCB isomer and air concentration. This H constant is a major factor used in estimating the loss of PCBs from solid and water phases. Several workers measured H constants for various PCB isomers [411,412]. Burkhard et al. [52] estimated H by calculating the ratio of the vapor pressure of the pure compound to its aqueous solubility (Eq. 13, Sect. 2.1.3). Henry s Law constant is temperature dependent and must be corrected for environmental conditions. The data and estimates presented in Table 7 are for 25 °C. Nicholson et al. [413] outlined procedures for adjusting the constants for temperature effects. [Pg.283]

As most compressions are irreversible, the temperature increase can be expected to be somewhat larger. But in well-thermostated solid metal cells it is believed that the temperature changes will decay rapidly. With reasonably gentle onset of pressure the temperature effects should be controllable. [Pg.131]

Atwood, A. I., Boggs, T. L, Curran, P. O., Parr, T. P., and Hanson-Parr, D. M., Burn Rate of Solid Propellant Ingredients, Part 1 Pressure and Initial Temperature Effects, and Part 2 Determination of Burning Rate Temperature Sensitivity, Journal of Propulsion and Power, Vol. 15, No. 5, 1999, pp. 740-752. [Pg.233]

McKinley, J.P. Jenne, E.A. (1991) Experimental investigation and review of the solids concentration" effect in adsorption studies. Environ. Sci. Technol. 25 2082-2087 McKinnon, W. Choung, J.W. Xu, Z. Einch, J.A. (2000) Magnetic seed in ambient temperature ferrite process applied to acid mine drainage treatment. Environ. Sci. Techn. 34 2575-2581... [Pg.607]

Crystal stmcture prediction by computer has made great steps forward in the last 10 years, with progress toward consistent success in blindfold tests. Fundamental uncertainties still remain, due to the unknown role of nucleation kinetics and to the neglect of temperature effects in the calculations. Success or failure still depends to some extent on hardly predictable factors and on the extent to which the experimental polymorph screening has been carried out. Presently, some of the best computational tools are not yet available to the general community of solid state scientists, being implemented in commercial, strictly copyrighted software. [Pg.30]

If the high conductivities were a temperature effect, as has been suggested, the conductivity in the detonation products of PETN should be highest at low charge densities, for here the temperature is highest. Yet the conductivity is lowest at these densities, where the carbon is in the form of CO gas and no solid carbon is present... [Pg.262]

Impact produces hot spots, the temperatures of which are (frequently) determined by melting of the solid, being effectively buffered at the melting point. Hence, the mp frequently determines the hot-spot temperature, T0 in the adiabatic-decomposition equation 8.8, listed on p 174 of Cook. If T0 is below a certain critical value, the reaction will not be adiabatic and, owing to heat loss, may not undergo reaction build-up. But above this critical value it becomes effectively adiabatic and expln then always results after a time T. The failure of grit to sensitize an expl may, however, depend simply on the ratio of the mp of the expl to that of the grit particle. [Pg.567]

Another procedure often used with less stringent assumptions than the equality of the gas and solid temperatures is the pseudohomogeneous analysis proposed by Vortmeyer and Schaefer (1974). This procedure has proved to be quite effective for simple adiabatic packed bed analyses and involves reducing the energy balances for the gas and catalyst to a single equation using the... [Pg.165]


See other pages where Solid temperature effects is mentioned: [Pg.1059]    [Pg.1359]    [Pg.1418]    [Pg.210]    [Pg.360]    [Pg.21]    [Pg.21]    [Pg.419]    [Pg.277]    [Pg.165]    [Pg.900]    [Pg.272]    [Pg.28]    [Pg.374]    [Pg.45]    [Pg.213]    [Pg.305]    [Pg.21]    [Pg.246]    [Pg.109]    [Pg.156]    [Pg.315]    [Pg.262]    [Pg.43]    [Pg.425]    [Pg.566]   
See also in sourсe #XX -- [ Pg.3278 ]




SEARCH



Effect solids

Solids temperature

© 2024 chempedia.info