Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular dynamics technique

The Langmuir-Hinshelwood picture is essentially that of Fig. XVIII-14. If the process is unimolecular, the species meanders around on the surface until it receives the activation energy to go over to product(s), which then desorb. If the process is bimolecular, two species diffuse around until a reactive encounter occurs. The reaction will be diffusion controlled if it occurs on every encounter (see Ref. 211) the theory of surface diffusional encounters has been treated (see Ref. 212) the subject may also be approached by means of Monte Carlo/molecular dynamics techniques [213]. In the case of activated bimolecular reactions, however, there will in general be many encounters before the reactive one, and the rate law for the surface reaction is generally written by analogy to the mass action law for solutions. That is, for a bimolecular process, the rate is taken to be proportional to the product of the two surface concentrations. It is interesting, however, that essentially the same rate law is obtained if the adsorption is strictly localized and species react only if they happen to adsorb on adjacent sites (note Ref. 214). (The apparent rate law, that is, the rate law in terms of gas pressures, depends on the form of the adsorption isotherm, as discussed in the next section.)... [Pg.722]

Wilson M R, Allen M P, Warren M A, Sauron A and Smith W 1997 Replicated data and domain decomposition molecular dynamics techniques for the simulation of anisotropic potentials J. Comput. Chem. 18 478-88... [Pg.2289]

Monte Carlo simulations generate a large number of confonnations of tire microscopic model under study that confonn to tire probability distribution dictated by macroscopic constrains imposed on tire systems. For example, a Monte Carlo simulation of a melt at a given temperature T produces an ensemble of confonnations in which confonnation with energy E. occurs witli a probability proportional to exp (- Ej / kT). An advantage of tire Monte Carlo metliod is tliat, by judicious choice of tire elementary moves, one can circumvent tire limitations of molecular dynamics techniques and effect rapid equilibration of multiple chain systems [65]. Flowever, Monte Carlo... [Pg.2537]

To enable an atomic interpretation of the AFM experiments, we have developed a molecular dynamics technique to simulate these experiments [49], Prom such force simulations rupture models at atomic resolution were derived and checked by comparisons of the computed rupture forces with the experimental ones. In order to facilitate such checks, the simulations have been set up to resemble the AFM experiment in as many details as possible (Fig. 4, bottom) the protein-ligand complex was simulated in atomic detail starting from the crystal structure, water solvent was included within the simulation system to account for solvation effects, the protein was held in place by keeping its center of mass fixed (so that internal motions were not hindered), the cantilever was simulated by use of a harmonic spring potential and, finally, the simulated cantilever was connected to the particular atom of the ligand, to which in the AFM experiment the linker molecule was connected. [Pg.86]

The Car-Parrinello quantum molecular dynamics technique, introduced by Car and Parrinello in 1985 [1], has been applied to a variety of problems, mainly in physics. The apparent efficiency of the technique, and the fact that it combines a description at the quantum mechanical level with explicit molecular dynamics, suggests that this technique might be ideally suited to study chemical reactions. The bond breaking and formation phenomena characteristic of chemical reactions require a quantum mechanical description, and these phenomena inherently involve molecular dynamics. In 1994 it was shown for the first time that this technique may indeed be applied efficiently to the study of, in that particular application catalytic, chemical reactions [2]. We will discuss the results from this and related studies we have performed. [Pg.433]

L. Pedersen, T. Darden, Molecular dynamics techniques and applications to proteins, in The Encyclopedia of Computational Chemistry, Vbl. 3,... [Pg.374]

Many more special-purpose software packages have been developed, particularly in teaching and research institutions. SMCM is software designed at the University of California in Los Angeles for partitioning of pollutants (19). Monte Carlo and molecular dynamic techniques have been adapted in a... [Pg.62]

Second, molecular dynamics techniques were employed that allowed the accurate... [Pg.230]

In the next section we describe the basic models that have been used in simulations so far and summarize the Monte Carlo and molecular dynamics techniques that are used. Some principal results from the scaling analysis of EP are given in Sec. 3, and in Sec. 4 we focus on simulational results concerning various aspects of static properties the MWD of EP, the conformational properties of the chain molecules, and their behavior in constrained geometries. The fifth section concentrates on the specific properties of relaxation towards equilibrium in GM and LP as well as on the first numerical simulations of transport properties in such systems. The final section then concludes with summary and outlook on open problems. [Pg.511]

The motion of particles of the film and substrate were calculated by standard molecular dynamics techniques. In the simulations discussed here, our purpose is to calculate equilibrium or metastable configurations of the system at zero Kelvin. For this purpose, we have applied random and dissipative forces to the particles. Finite random forces provide the thermal motion which allows the system to explore different configurations, and the dissipation serves to stabilize the system at a fixed temperature. The potential energy minima are populated by reducing the random forces to zero, thus permitting the dissipation to absorb the kinetic energy. [Pg.230]

Depaepe, J.M. Ryckaert, J.P Paci, E. Ciccotti, G., Sampling of molecular conformations by molecular dynamics techniques, Mol. Phys. 1993, 79, 515-522... [Pg.168]

Some of the major areas of activity in this field have been the application of the method to more complex materials, molecular dynamics, [28] and the treatment of excited states. [29] We will deal with some of the new materials in the next section. Two major goals of the molecular dynamics calculations are to determine crystal structures from first principles and to include finite temperature effects. By combining molecular dynamics techniques and ah initio pseudopotentials within the local density approximation, it becomes possible to consider complex, large, and disordered solids. [Pg.262]

To date, the only applications of these methods to the solution/metal interface have been reported by Price and Halley, who presented a simplified treatment of the water/metal interface. Briefly, their model involves the calculation of the metal s valence electrons wave function, assuming that the water molecules electronic density and the metal core electrons are fixed. The calculation is based on a one-electron effective potential, which is determined from the electronic density in the metal and the atomic distribution of the liquid. After solving the Schrddinger equation for the wave function and the electronic density for one configuration of the liquid atoms, the force on each atom is ciculated and the new positions are determined using standard molecular dynamics techniques. For more details about the specific implementation of these general ideas, the reader is referred to the original article. ... [Pg.125]

In addition to the study of atomic motion during chemical reactions, the molecular dynamics technique has been widely used to study the classical statistical mechanics of well-defined systems. Within this application considerable progress has been made in introducing constraints into the equations of motion so that a variety of ensembles may be studied. For example, classical equations of motion generate constant energy trajectories. By adding additional terms to the forces which arise from properties of the system such as the pressure and temperature, other constants of motion have been introduced. [Pg.327]

Using a realistic model for PE, the molecular dynamics technique is used to simulate atomic motion in a crystal. The calculations reveal conformational disorder above a critical temperature. The customarily assumed RIS model is found to be a poor description of the crystal at elevated temperature. [Pg.48]

A simulation of the far infrared spectrum of liquid water and steam at temperatures from 273 to 473 K was undertaken, based on molecular dynamics techniques [122]. [Pg.387]

Optimization of the structure of Sigo without any symmetry restrictions, using a tight binding molecular dynamic technique, resulted in a C2h structure (116). This relaxed geometry is probably preferred over the 7h structure because it allows increased... [Pg.70]

The molecular dynamic technique has been validated for water structures through comparison of calculated properties with experimental thermodynamic water data, such as the density maximum, the high heat capacity, and diffraction patterns (Stillinger and Rahman, 1974) as well as the hydrate infrared (vibrational) spectral data by Bertie and Jacobs (1977, 1982). With acceptable comparisons of many computed and experimental properties of water structures, there is little doubt that a substance similar to water has been simulated. [Pg.310]

The computer simulations employed the molecular dynamics technique, in which particles are moved deterministically by integrating their equations of motion. The system size was 864 Lennard-Jones atoms, of which one was the solute (see Table II for potential parameters). There were no solute-solute interactions. Periodic boundary conditions and the minimum image criterion were used (76). The cutoff radius for binary interactions was 3.5 G (see Table II). Potentials were truncated beyond the cutoff. [Pg.76]

After 14 years on the faculty of Imperial College, Jacobs moved from London, England, to London, Ontario, where his research program focused on the optical and electrical properties of ionic crystals, as well as on the experimental and theoretical determination of thermodynamic and kinetic properties of crystal defects.213 Over the years his research interests have expanded to include several aspects of computer simulations of condensed matter.214 He has developed algorithms215 for molecular dynamics studies of non-ionic and ionic systems, and he has carried out simulations on systems as diverse as metals, solid ionic conductors, and ceramics. The simulation of the effects of radiation damage is a special interest. His recent interests include the study of perfect and imperfect crystals by means of quantum chemical methods. The corrosion of metals is being studied by both quantum chemical and molecular dynamics techniques. [Pg.265]

Peter Kusalik took up an appointment at Dalhousie University in 1989 and developed a research program focused on computer simulation studies of molecular liquids, solids, and solutions. As well as standard simulation approaches, he has explored nonequilibrium molecular dynamics techniques and applied field simulations, the development of new models and methodologies being one aim of his research. A common focus throughout his work has been the examination of the interplay between microscopic structure and dynamics in condensed matter and their relationship to bulk properties. [Pg.274]

Except the kinetic equations, now various numerical techniques are used to study the dynamics of surfaces and gas-solid interface processes. The cellular automata and MC techniques are briefly discussed. Both techniques can be directly connected with the lattice-gas model, as they operate with discrete distribution of the molecules. Using the distribution functions in a kinetic theory a priori assumes the existence of the total distribution function for molecules of the whole system, while all numerical methods have to generate this function during computations. A success of such generation defines an accuracy of simulations. Also, the well-known molecular dynamics technique is used for interface study. Nevertheless this topic is omitted from our consideration as it requires an analysis of a physical background for construction of the transition probabilities. This analysis is connected with an oscillation dynamics of all species in the system that is absent in the discussed kinetic equations (Section 3). [Pg.427]

We illustrate the molecular dynamics technique by application to the ion beam deposition technique. Molecular dynamics could be used to investigate the effect of deposition conditions on the microstructure of the growing film. The microstructural characteristics of interest include film roughness and porosity. [Pg.766]


See other pages where Molecular dynamics technique is mentioned: [Pg.369]    [Pg.468]    [Pg.230]    [Pg.67]    [Pg.106]    [Pg.3]    [Pg.235]    [Pg.119]    [Pg.631]    [Pg.78]    [Pg.79]    [Pg.67]    [Pg.41]    [Pg.33]    [Pg.265]    [Pg.265]    [Pg.299]    [Pg.48]    [Pg.160]    [Pg.398]    [Pg.219]    [Pg.71]    [Pg.67]    [Pg.311]    [Pg.616]    [Pg.490]   
See also in sourсe #XX -- [ Pg.467 , Pg.468 , Pg.469 , Pg.470 , Pg.471 , Pg.472 , Pg.473 , Pg.474 , Pg.475 , Pg.476 ]

See also in sourсe #XX -- [ Pg.139 ]

See also in sourсe #XX -- [ Pg.139 ]

See also in sourсe #XX -- [ Pg.237 ]

See also in sourсe #XX -- [ Pg.3 ]




SEARCH



Dynamic technique

Molecular techniques

© 2024 chempedia.info