Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Since

The method proposed in this monograph has a firm thermodynamic basis. For vapo/-liquid equilibria, the method may be used at low or moderate pressures commonly encountered in separation operations since vapor-phase nonidealities are taken into account. For liquid-liquid equilibria the effect of pressure is usually not important unless the pressure is very large or unless conditions are near the vapor-liquid critical region. [Pg.2]

In vapor-liquid equilibria, it is relatively easy to start the iteration because assumption of ideal behavior (Raoult s law) provides a reasonable zeroth approximation. By contrast, there is no obvious corresponding method to start the iteration calculation for liquid-liquid equilibria. Further, when two liquid phases are present, we must calculate for each component activity coefficients in two phases since these are often strongly nonlinear functions of compositions, liquid-liquid equilibrium calculations are highly sensitive to small changes in composition. In vapor-liquid equilibria at modest pressures, this sensitivity is lower because vapor-phase fugacity coefficients are usually close to unity and only weak functions of composition. For liquid-liquid equilibria, it is therefore more difficult to construct a numerical iteration procedure that converges both rapidly and consistently. [Pg.4]

Zwolinski (Executive Officer) "International Data Series Selected Data on Mixtures," Thermodynamics Research Center, Chemistry Department, Texas A M University, College Station, Texas 77843 (continuing since 1973). ... [Pg.10]

For such components, as the composition of the solution approaches that of the pure liquid, the fugacity becomes equal to the mole fraction multiplied by the standard-state fugacity. In this case,the standard-state fugacity for component i is the fugacity of pure liquid i at system temperature T. In many cases all the components in a liquid mixture are condensable and Equation (13) is therefore used for all components in this case, since all components are treated alike, the normalization of activity coefficients is said to follow the symmetric convention. ... [Pg.18]

However, if the liquid solution contains a noncondensable component, the normalization shown in Equation (13) cannot be applied to that component since a pure, supercritical liquid is a physical impossibility. Sometimes it is convenient to introduce the concept of a pure, hypothetical supercritical liquid and to evaluate its properties by extrapolation provided that the component in question is not excessively above its critical temperature, this concept is useful, as discussed later. We refer to those hypothetical liquids as condensable components whenever they follow the convention of Equation (13). However, for a highly supercritical component (e.g., H2 or N2 at room temperature) the concept of a hypothetical liquid is of little use since the extrapolation of pure-liquid properties in this case is so excessive as to lose physical significance. [Pg.18]

In a binary liquid solution containing one noncondensable and one condensable component, it is customary to refer to the first as the solute and to the second as the solvent. Equation (13) is used for the normalization of the solvent s activity coefficient but Equation (14) is used for the solute. Since the normalizations for the two components are not the same, they are said to follow the unsymmetric convention. The standard-state fugacity of the solvent is the fugacity of the pure liquid. The standard-state fugacity of the solute is Henry s constant. [Pg.19]

Unfortunately, the ideal-gas assumption can sometimes lead to serious error. While errors in the Lewis rule are often less, that rule has inherent in it the problem of evaluating the fugacity of a fictitious substance since at least one of the condensable components cannot, in general, exist as pure vapor at the temperature and pressure of the mixture. [Pg.25]

The virial equation is appropriate for describing deviations from ideality in those systems where moderate attractive forces yield fugacity coefficients not far removed from unity. The systems shown in Figures 2, 3, and 4 are of this type. However, in systems containing carboxylic acids, there prevails an entirely different physical situation since two acid molecules tend to form a pair of stable hydrogen bonds, large negative... [Pg.31]

Two additional illustrations are given in Figures 6 and 7 which show fugacity coefficients for two binary systems along the vapor-liquid saturation curve at a total pressure of 1 atm. These results are based on the chemical theory of vapor-phase imperfection and on experimental vapor-liquid equilibrium data for the binary systems. In the system formic acid (1) - acetic acid (2), <() (for y = 1) is lower than formic acid at 100.5°C has a stronger tendency to dimerize than does acetic acid at 118.2°C. Since strong dimerization occurs between all three possible pairs, (fij and not... [Pg.35]

Since parameters for many fluids of interest are not given in this monograph, it may be necessary to estimate the required parameters T, P, R, y, and n. ... [Pg.36]

Since the accuracy of experimental data is frequently not high, and since experimental data are hardly ever plentiful, it is important to reduce the available data with care using a suitable statistical method and using a model for the excess Gibbs energy which contains only a minimum of binary parameters. Rarely are experimental data of sufficient quality and quantity to justify more than three binary parameters and, all too often, the data justify no more than two such parameters. When data sources (5) or (6) or (7) are used alone, it is not possible to use a three- (or more)-parameter model without making additional arbitrary assumptions. For typical engineering calculations, therefore, it is desirable to use a two-parameter model such as UNIQUAC. [Pg.43]

The critical temperature of methane is 191°K. At 25°C, therefore, the reduced temperature is 1.56. If the dividing line is taken at T/T = 1.8, methane should be considered condensable at temperatures below (about) 70°C and noncondensable at higher temperatures. However, in process design calculations, it is often inconvenient to switch from one method of normalization to the other. In this monograph, since we consider only equilibria at low or moderate pressures in the region 200-600°K, we elect to consider methane as a noncondensable component. [Pg.59]

Since we make the simplifying assumption that the partial molar volumes are functions only of temperature, we assume that, for our purposes, pressure has no effect on liquid-liquid equilibria. Therefore, in Equation (23), pressure is not a variable. The activity coefficients depend only on temperature and composition. As for vapor-liquid equilibria, the activity coefficients used here are given by the UNIQUAC equation. Equation (15). ... [Pg.63]

Figure 15 shows results for a difficult type I system methanol-n-heptane-benzene. In this example, the two-phase region is extremely small. The dashed line (a) shows predictions using the original UNIQUAC equation with q = q. This form of the UNIQUAC equation does not adequately fit the binary vapor-liquid equilibrium data for the methanol-benzene system and therefore the ternary predictions are grossly in error. The ternary prediction is much improved with the modified UNIQUAC equation (b) since this equation fits the methanol-benzene system much better. Further improvement (c) is obtained when a few ternary data are used to fix the binary parameters. [Pg.66]

In most cases only a single tie line is required. When several are available, the choice of which one to use is somewhat arbitrary. However, our experience has shown that tie lines which are near the middle of the two-phase region are most useful for estimating the parameters. Tie lines close to the plait point are less useful, since no common models for the excess Gibbs energy can adequately describe the flat region near the... [Pg.68]

Using the ternary tie-line data and the binary VLE data for the miscible binary pairs, the optimum binary parameters are obtained for each ternary of the type 1-2-i for i = 3. .. m. This results in multiple sets of the parameters for the 1-2 binary, since this binary occurs in each of the ternaries containing two liquid phases. To determine a single set of parameters to represent the 1-2 binary system, the values obtained from initial data reduction of each of the ternary systems are plotted with their approximate confidence ellipses. We choose a single optimum set from the intersection of the confidence ellipses. Finally, with the parameters for the 1-2 binary set at their optimum value, the parameters are adjusted for the remaining miscible binary in each ternary, i.e. the parameters for the 2-i binary system in each ternary of the type 1-2-i for i = 3. .. m. This adjustment is made, again, using the ternary tie-line data and binary VLE data. [Pg.74]

Since attention is here confined to moderate pressures, the last term in Equation (15) can be neglected. The first term in Equation (15) is given by Equation (5), with x s replacing y s. [Pg.86]

While many methods for parameter estimation have been proposed, experience has shown some to be more effective than others. Since most phenomenological models are nonlinear in their adjustable parameters, the best estimates of these parameters can be obtained from a formalized method which properly treats the statistical behavior of the errors associated with all experimental observations. For reliable process-design calculations, we require not only estimates of the parameters but also a measure of the errors in the parameters and an indication of the accuracy of the data. [Pg.96]

The procedure would then require calculation of (2m+2) partial derivatives per iteration, requiring 2m+2 evaluations of the thermodynamic functions per iteration. Since the computation effort is essentially proportional to the number of evaluations, this form of iteration is excessively expensive, even if it converges rapidly. Fortunately, simpler forms exist that are almost always much more efficient in application. [Pg.117]

As the feed composition approaches a plait point, the rate of convergence of the calculation procedure is markedly reduced. Typically, 10 to 20 iterations are required, as shown in Cases 2 and 6 for ternary type-I systems. Very near a plait point, convergence can be extremely slow, requiring 50 iterations or more. ELIPS checks for these situations, terminates without a solution, and returns an error flag (ERR=7) to avoid unwarranted computational effort. This is not a significant disadvantage since liquid-liquid separations are not intentionally conducted near plait points. [Pg.127]

The total enthalpy correction due to chemical reactions is the sum of all the enthalpies of dimerization for each i-j pair multiplied by the mole fraction of dimer i-j. Since this gives the enthalpy correction for one mole of true species, we multiply this quantity by the ratio of the true number of moles to the stoichiometric number of moles. This gives... [Pg.136]

SINCE LAST CALL FOR SAME SYSTEM, 3 IF TEMPERATURE IS UNCHAN3EO FRO ... [Pg.300]

CHECK FOR SIGNIFICANT CHANGE IN T OR P SINCE LAST CALL FOR SYSTEM... [Pg.300]

Since process design starts with the reactor, the first decisions are those which lead to the choice of reactor. These decisions are among the most important in the whole design. Good reactor performance is of paramount importance in determining the economic viability of the overall design and fundamentally important to the environmental impact of the process. In addition to the desired products, reactors produce unwanted byproducts. These unwanted byproducts create environmental problems. As we shall discuss later in Chap. 10, the best solution to environmental problems is not elaborate treatment methods but not to produce waste in the first place. [Pg.15]

Given that the objective is to manufacture a certain product, there are often a number of alternative reaction paths to that product. Reaction paths which use the cheapest raw materials and produce the smallest quantities of byproducts are to be preferred. Reaction paths which produce significant quantities of unwanted byproducts should especially be avoided, since they create significant environmental problems. [Pg.16]

Paths 1 and 3 are clearly not viable. Only path 2 shows a positive economic potential when the byproduct HCl can be sold. In practice, this might be quite difficult, since the market for HCl tends to be limited. [Pg.17]

Because there are two feeds to this process, the reactor performance can be calculated with respect to both feeds. However, the principal concern is performance with respect to toluene, since it is much more expensive than hydrogen. [Pg.25]

If k-2 increases faster than kx, operate at low temperature (but beware of capital cost, since low temperature, although increasing selectivity, also increases reactor size). Here there is an economic tradeoff between decreasing byproduct formation and increasing capital cost. [Pg.42]

Temperature control. Let us now consider temperature control of the reactor. In the first instance, adiabatic operation of the reactor should be considered, since this leads to the simplest and cheapest reactor design. If adiabatic operation produces an unacceptable rise in temperature for exothermic reactions or an unacceptable fall in temperature for endothermic reactions, this can be dealt with in a number of ways ... [Pg.42]

Catalytic gas-phase reactions play an important role in many bulk chemical processes, such as in the production of methanol, ammonia, sulfuric acid, and nitric acid. In most processes, the effective area of the catalyst is critically important. Since these reactions take place at surfaces through processes of adsorption and desorption, any alteration of surface area naturally causes a change in the rate of reaction. Industrial catalysts are usually supported on porous materials, since this results in a much larger active area per unit of reactor volume. [Pg.47]

The rate at which the catalyst is lost or degrades has a major influence on the design. If degradation is rapid, the catalyst needs to be regenerated or replaced on a continuous basis. In addition to the cost implications, there are also environmental implications, since the lost or degraded catalyst represents waste. While it is often possible to recover useful materials from degraded catalyst and to recycle those materials in the manufacture of new catalyst, this still inevitably creates waste, since the recovery of material can never be complete. [Pg.49]


See other pages where Since is mentioned: [Pg.14]    [Pg.15]    [Pg.20]    [Pg.21]    [Pg.31]    [Pg.55]    [Pg.55]    [Pg.67]    [Pg.71]    [Pg.113]    [Pg.115]    [Pg.117]    [Pg.262]    [Pg.300]    [Pg.9]    [Pg.15]    [Pg.26]    [Pg.29]    [Pg.42]    [Pg.54]   


SEARCH



Acyclic Alkenes An Update since Part

Additional Experience Since Early

Advances Since First Edition of this Book

Advances in X-Ray Crystallography Since

Advances in X-ray crystallography sinc

Belgium since

Biochemistry Since

Building materials since the

Carbon dioxide 309 increase since

Carbon emissions since industrial revolution

Chemical weapons since First Review Conference

Chemistry Since

Chemists 12-13 since

Detecting environmentally important since

Development of Coordination Chemistry Since

Developments since

Electrophoresis since

Evolution of designs since the last IAEA status report on SMRs

Few changes that have been standardized and approved since publication

Food industrial advances since

Further developments in coal hydrogenation since

Isothiazoles 2, 365 since

Isoxazole chemistry since

Isoxazole chemistry, recent developments 365 since

Isoxazole chemistry, recent developments in, 2, 365 since

Known Since Antiquity

New Insights Achieved Since

Oncology drugs since

Organic Chemistry since

Plastics developments since

Practice on CW issues since entry into force of the Convention

Precious Stones Known Since Antiquity

Process Since Early

Process developments since

SINC function

SiNC inorganic heterocycles

Sinc-function discrete variable

Sinc-function discrete variable representation

Since COMC

Sleep Time since

Sorption, SINC

Structure determination since

TRENDS SINCE THE MID

The industry since

© 2024 chempedia.info