Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silicon, physical properties

Wolf A (2007) Sintered porous silicon -Physical properties and applications for layer-transfer silicon thin-film solar cells. PhD dissertation, Gottfried Wilhelm Leibniz Universitys Hannover... [Pg.844]

Physical Properties. Physical properties of importance include particle size, density, volume fraction of intraparticle and extraparticle voids when packed into adsorbent beds, strength, attrition resistance, and dustiness. These properties can be varied intentionally to tailor adsorbents to specific apphcations (See Adsorption liquid separation Aluminum compounds, aluminum oxide (alumna) Carbon, activated carbon Ion exchange Molecular sieves and Silicon compounds, synthetic inorganic silicates). [Pg.278]

Physical Properties. Raman spectroscopy is an excellent tool for investigating stress and strain in many different materials (see Materlals reliability). Lattice strain distribution measurements in siUcon are a classic case. More recent examples of this include the characterization of thin films (56), and measurements of stress and relaxation in silicon—germanium layers (57). [Pg.214]

Calcium—Silicon. Calcium—silicon and calcium—barium—siUcon are made in the submerged-arc electric furnace by carbon reduction of lime, sihca rock, and barites. Commercial calcium—silicon contains 28—32% calcium, 60—65% siUcon, and 3% iron (max). Barium-bearing alloys contains 16—20% calcium, 9—12% barium, and 53—59% sihcon. Calcium can also be added as an ahoy containing 10—13% calcium, 14—18% barium, 19—21% aluminum, and 38—40% shicon These ahoys are used to deoxidize and degasify steel. They produce complex calcium shicate inclusions that are minimally harm fill to physical properties and prevent the formation of alumina-type inclusions, a principal source of fatigue failure in highly stressed ahoy steels. As a sulfide former, they promote random distribution of sulfides, thereby minimizing chain-type inclusions. In cast iron, they are used as an inoculant. [Pg.541]

Table 3. Physical Properties of Silicon Tetrachloride and Trichlorosilane ... Table 3. Physical Properties of Silicon Tetrachloride and Trichlorosilane ...
Silicone foam thus formed has an open ceU stmcture and is a relatively poor insulating material. Cell size can be controlled by the selection of fillers, which serve as bubble nucleating sites. The addition of quartz as a filler gready improves the flame retardancy of the foam char yields of >65% can be achieved. Because of its excellent dammabiUty characteristics, siUcone foam is used in building and constmction fire-stop systems and as pipe insulation in power plants. Typical physical properties of siUcone foam are Hsted in Table 10. [Pg.56]

Titanium Silicides. The titanium—silicon system includes Ti Si, Ti Si, TiSi, and TiSi (154). Physical properties are summarized in Table 18. Direct synthesis by heating the elements in vacuo or in a protective atmosphere is possible. In the latter case, it is convenient to use titanium hydride instead of titanium metal. Other preparative methods include high temperature electrolysis of molten salt baths containing titanium dioxide and alkalifluorosiUcate (155) reaction of TiCl, SiCl, and H2 at ca 1150°C, using appropriate reactant quantities for both TiSi and TiSi2 (156) and, for Ti Si, reaction between titanium dioxide and calcium siUcide at ca 1200°C, followed by dissolution of excess lime and calcium siUcate in acetic acid. [Pg.132]

Silicon—Ca.rbon Thermoset. The Sycar resins of Hercules are sihcon—carbon thermosets cured through the hydrosilation of sihcon hydride and sihcon vinyl groups with a trace amount of platinum catalyst. The material is a fast-cure system (<15 min at 180°C) and shows low moisture absorption that outperforms conventional thermosets such as polyimides and epoxies. Furthermore, the Sycar material provides excellent mechanical and physical properties used in printed wiring board (PWB) laminates and encapsulants such as flow coatable or glob-top coating of chip-on-board type apphcations. [Pg.189]

Table 29.5 Physical properties of general purpose silicone rubbers (Values determined at 20°C after curing for 24 hours at 250 C) ... Table 29.5 Physical properties of general purpose silicone rubbers (Values determined at 20°C after curing for 24 hours at 250 C) ...
The early 1980s saw considerable interest in a new form of silicone materials, namely the liquid silicone mbbers. These may be considered as a development from the addition-cured RTV silicone rubbers but with a better pot life and improved physical properties, including heat stability similar to that of conventional peroxide-cured elastomers. The ability to process such liquid raw materials leads to a number of economic benefits such as lower production costs, increased ouput and reduced capital investment compared with more conventional rubbers. Liquid silicone rubbers are low-viscosity materials which range from a flow consistency to a paste consistency. They are usually supplied as a two-pack system which requires simple blending before use. The materials cure rapidly above 110°C and when injection moulded at high temperatures (200-250°C) cure times as low as a few seconds are possible for small parts. Because of the rapid mould filling, scorch is rarely a problem and, furthermore, post-curing is usually unnecessary. [Pg.839]

A chemical property of silicones is the possibility of building reactivity on the polymer [1,32,33]. This allows the building of cured silicone networks of controlled molecular architectures with specific adhesion properties while maintaining the inherent physical properties of the PDMS chains. The combination of the unique bulk characteristics of the silicone networks, the surface properties of the PDMS segments, and the specificity and controllability of the reactive groups, produces unique materials useful as adhesives, protective encapsulants, coatings and sealants. [Pg.681]

Since the locus of failure can clearly distinguish between adhesive and cohesive failures, the following discussion separates loss of adherence into loss of adhesion and loss of cohesion. In the loss of cohesion it is the polysiloxane network that degrades, which can be dealt with independently of the substrate. The loss of adhesion, however, is dependent on the cure chemistry of the silicone, the chemical and physical properties of the substrates, and the specific mechanisms of adhesion involved. [Pg.697]

We have attempted to relate the basics of silicone chemistry to applications where adhesion is an important property. These applications cover a vast industrial arena that does not make a review of this sort easy. Instead, we focused on the fundamental aspects of silicone physics and chemistry and related them to adhesion and adherence properties. We have attempted to use a logical structure to help the reader understand silicone adhesion. Adhesion and cohesion have been considered as they both determine the ultimate performance of an adhesive joint. [Pg.705]

Physical properties are summarized in Table 9.1 (see also p. 373). Silicon is notably more volatile than C and has a substantially lower energy of vaporization, thus reflecting the smaller... [Pg.331]

Steel is essentially iron with a small amount of carbon. Additional elements are present in small quantities. Contaminants such as sulfur and phosphorus are tolerated at varying levels, depending on the use to which the steel is to be put. Since they are present in the raw material from which the steel is made it is not economic to remove them. Alloying elements such as manganese, silicon, nickel, chromium, molybdenum and vanadium are present at specified levels to improve physical properties such as toughness or corrosion resistance. [Pg.905]

The aim of this research was the preparation of unique silicon-functional macroreagents, particularly linear polyolefins carrying one or two Si-Cl or Si-H termini and thus to combine the excellent physical properties offered by these polyhydrocarbons with the versatility and chemical reactivity of the Si-Cl and Si-H bonds. [Pg.3]

As a result of its unique chemical and physical properties, silica gel is probably the most important single substance involved in liquid chromatography today. Without silica gel, it is doubtful whether HPLC could have evolved at all. Silica gel is an amorphous, highly porous, partially hydrated form of silica which is a substance made from the two most abundant elements in the earth s crust, silicon and oxygen. Silica, from which silica gel is manufactured, occurs naturally, either in conjunction with metal oxides in the form of silicates, such as clay or shale, or as free silica in the form of quartz, cristobalite or tridymite crystals. Quartz is sometimes found clear and colorless, but more often in an opaque form, frequently colored... [Pg.55]

Limitations of Plasma CVD. With plasma CVD, it is difficult to obtain a deposit of pure material. In most cases, desorption of by-products and other gases is incomplete because of the low temperature and these gases, particularly hydrogen, remain as inclusions in the deposit. Moreover, in the case of compounds, such as nitrides, oxides, carbides, or silicides, stoichiometry is rarely achieved. This is generally detrimental since it alters the physical properties and reduces the resistance to chemical etching and radiation attack. However in some cases, it is advantageous for instance, amorphous silicon used in solar cells has improved optoelectronic properties if hydrogen is present (see Ch. 15). [Pg.142]

Silicon wafer has been extensively used in the semiconductor industry. CMP of silicon is one of the key technologies to obtain a smooth, defect-free, and high reflecting silicon surfaces in microelectronic device patterning. Silicon surface qualities have a direct effect on physical properties, such as breakdown point, interface state, and minority carrier lifetime, etc. Cook et al. [54] considered the chemical processes involved in the polishing of glass and extended it to the polishing of silicon wafer. They presented the chemical process which occurs by the interaction of the silicon layer and the... [Pg.249]

Ghosh, A. and De, S.K. Dependence of Physical Properties and Processing Behavior of Blends of Silicone Rubber and Fluorombber on Blend Morphology. Rubber Chem. Technol. 77(5), 856-872, November/December 2004. [Pg.348]

Physical properties of the polysilanes depend greatly upon the nature of the organic groups bound to silicon. A few of the many polysilanes are listed in Table I. Typically the linear polysilanes are thermoplastics, soluble in organic solvents like toluene, ethers,... [Pg.8]

Non-oxide ceramics such as silicon carbide (SiC), silicon nitride (SijN ), and boron nitride (BN) offer a wide variety of unique physical properties such as high hardness and high structural stability under environmental extremes, as well as varied electronic and optical properties. These advantageous properties provide the driving force for intense research efforts directed toward developing new practical applications for these materials. These efforts occur despite the considerable expense often associated with their initial preparation and subsequent transformation into finished products. [Pg.124]

Any two samples of a particular mineral, whatever their source or place of origin, have the same basic composition and characteristic crystal structure moreover, no two different minerals have identical chemical composition and crystal structure (see Textboxes 8 and 21). Quartz, for example, is a common and abundant mineral composed of silicon dioxide, a compound that occurs naturally not only as quartz but also in other crystal structures, known as polymorphs (polymorphs are minerals that have the same chemical composition but different crystal structure), some of which, listed in Table 23, have been used for a variety of purposes. The crystal structure, which is essential for the characterization of solid materials, is just one of a wide range of physical properties, that is, properties not involving chemical differences, which provide convenient criteria for characterizing and identifying solids. [Pg.39]


See other pages where Silicon, physical properties is mentioned: [Pg.170]    [Pg.170]    [Pg.131]    [Pg.838]    [Pg.851]    [Pg.684]    [Pg.1216]    [Pg.331]    [Pg.365]    [Pg.30]    [Pg.526]    [Pg.570]    [Pg.199]    [Pg.222]    [Pg.6]    [Pg.205]    [Pg.266]    [Pg.464]    [Pg.28]    [Pg.63]    [Pg.54]    [Pg.120]    [Pg.345]    [Pg.51]    [Pg.46]   
See also in sourсe #XX -- [ Pg.161 , Pg.166 ]

See also in sourсe #XX -- [ Pg.330 , Pg.371 , Pg.372 ]

See also in sourсe #XX -- [ Pg.161 , Pg.166 ]

See also in sourсe #XX -- [ Pg.880 ]

See also in sourсe #XX -- [ Pg.330 , Pg.371 , Pg.372 ]

See also in sourсe #XX -- [ Pg.342 , Pg.877 , Pg.879 , Pg.880 , Pg.884 ]

See also in sourсe #XX -- [ Pg.134 ]

See also in sourсe #XX -- [ Pg.134 ]

See also in sourсe #XX -- [ Pg.43 , Pg.381 , Pg.1013 , Pg.1015 , Pg.1016 , Pg.1020 ]

See also in sourсe #XX -- [ Pg.185 , Pg.206 ]

See also in sourсe #XX -- [ Pg.899 ]

See also in sourсe #XX -- [ Pg.44 , Pg.432 , Pg.1126 , Pg.1128 , Pg.1129 , Pg.1133 ]

See also in sourсe #XX -- [ Pg.123 ]




SEARCH



Physical properties porous silicon

Physical properties silicon carbide

Physical properties silicon nitride

Physical properties silicone rubber

Silicon alkoxides physical properties

Silicon tetrahalides physical properties

Silicones physical properties

Silicones properties

© 2024 chempedia.info