Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sensors thermal conductivity

Infrared photometers Paramagnetic oxygen sensors Thermal conductivity sensors Distillation-type analyzers 1 930s and 1 940s Refining... [Pg.4]

Sensor based on physical properties of gas Nondispersive infrared UV absorption Photo acoustic sensor Thermal conductive sensor Gas ionization... [Pg.27]

The main types of instruments measuring humidity in gases are various types of hygrometers (gravimetric, mechanical, condensation, infrared absorbance detector, electric sensor, thermal conductivity, Al203/sili-con, P2O5) and psychrometers. [Pg.668]

Thermal Methods Level-measuring systems may be based on the difference in thermal characteristics oetween the fluids, such as temperature or thermal conductivity. A fixed-point level sensor based on the difference in thermal conductivity between two fluids consists of an electrically heated thermistor inserted into the vessel. The temperature of the thermistor and consequently its electrical resistance increase as the thermal conductivity of the fluid in which it is immersed decreases. Since the thermal conductivity of liquids is markedly higher than that of vapors, such a device can be used as a point level detector for liquid-vapor interface. [Pg.764]

The resistance thermometry is based on the temperature dependence of the electric resistance of metals, semiconductors and other resistive materials. This is the most diffused type of low-temperature thermometry sensors are usually commercial low-cost components. At very low temperatures, however, several drawbacks take place such as the low thermal conductivity in the bulk of the resistance and at the contact surface, the heating due to RF pick up and overheating (see Section 9.6.3)... [Pg.217]

Low-temperature thermometers are obtained by cutting a metallized wafer of NTD Ge into chips of small size (typically few mm3) and bonding the electrical contacts onto the metallized sides of the chip. These chips are seldom used as calibrated thermometers for temperatures below 30 mK, but find precious application as sensors for low-temperature bolometers [42,56], When the chips are used as thermometers, i.e. in quasi-steady applications, their heat capacity does not represent a problem. In dynamic applications and at very low temperatures T < 30 mK, the chip heat capacity, together with the carrier-to-phonon thermal conductance gc d, (Section 15.2.1.3), determines the rise time of the pulses of the bolometer. [Pg.302]

The thermal conductivity of methane is about twice as high as that of any other flammable compound of natural gas. Sensors for determining the methane number use this effect, and the principle is already in use for gas engines [2], as their performance depends heavily on the methane number. [Pg.42]

Many commercial split flow capillary LC systems incorporate a nano flow sensor mounted online to the capillary channel. The split flow system can be easily modified from a conventional system and performs satisfactorily for capillary LC applications. However, the split flow system may require thermal control and the LC solvent requires continuous degassing. In addition, the system may not work reliably at a high flow split ratios and at pressures above 6000 psi due to technical limitations of the fused silica thermal conductivity flow sensor. The split flow system based on conventional check valve design may not be compatible with splitless nano LC applications. The conventional ball-and-seat check valve is not capable of delivering nano flow rates and is not reliable for 7/24 operation at low flow. [Pg.374]

Freifeld, B.M., Finsterle, S., Onstott, T.C., Toole, P., Pratt, L.M. 2008. Ground surface temperature reconstructions using in situ estimates for thermal conductivity acquired with a fiber-optic distributed thermal perturbation sensor. Geophysical Research Letters, 35, L14309,... [Pg.284]

Microhotplates, however, are not only used for metal-oxide-based gas sensor applications. In all cases, in which elevated temperatures are required, or thermal decoupling from the bulk substrate is necessary, microhotplate-like structures can be used with various materials and detector configurations [25]. Examples include polymer-based capacitive sensors [26], pellistors [27-29], GasFETs [30,31], sensors based on changes in thermal conductivity [32], or devices that rely on metal films [33,34]. Only microhotplates for chemoresistive metal-oxide materials will be further detailed here. The relevant design considerations will be addressed. [Pg.6]

A cross-sectional schematic of a monolithic gas sensor system featuring a microhotplate is shown in Fig. 2.2. Its fabrication relies on an industrial CMOS-process with subsequent micromachining steps. Diverse thin-film layers, which can be used for electrical insulation and passivation, are available in the CMOS-process. They are denoted dielectric layers and include several silicon-oxide layers such as the thermal field oxide, the contact oxide and the intermetal oxide as well as a silicon-nitride layer that serves as passivation. All these materials exhibit a characteristically low thermal conductivity, so that a membrane, which consists of only the dielectric layers, provides excellent thermal insulation between the bulk-silicon chip and a heated area. The heated area features a resistive heater, a temperature sensor, and the electrodes that contact the deposited sensitive metal oxide. An additional temperature sensor is integrated close to the circuitry on the bulk chip to monitor the overall chip temperature. The membrane is released by etching away the silicon underneath the dielectric layers. Depending on the micromachining procedure, it is possible to leave a silicon island underneath the heated area. Such an island can serve as a heat spreader and also mechanically stabihzes the membrane. The fabrication process will be explained in more detail in Chap 4. [Pg.11]

Another possibihty to improve the temperature homogeneity is to introduce an additional polysiHcon plate in the membrane center. The thermal conductivity of polysilicon is lower than that of crystalline siHcon but much higher than the thermal conductivity of the dielectric layers, so that the heat conduction across the heated area is increased. Such an additional plate constitutes a heat spreader that can be realized without the use of an electrochemical etch stop technique. Although this device was not fabricated, simulations were performed in order to quantify the possible improvement of the temperature homogeneity. The simulation results of such a microhotplate are plotted in Fig. 4.9. The abbreviations Si to S4 denote the simulated temperatures at the characteristic locations of the temperature sensors. At the location T2, the simulated relative temperature difference is 5%, which corresponds to a temperature gradient of 0.15 °C/pm at 300 °C. [Pg.41]

I. Simon and M. Arndt. Thermal and gas-sensingproperties of a micromachined thermal conductivity sensor for the detection of hydrogen in automotive applications . Sensors and Actuators A97-98 (2002), 104-108. [Pg.114]

Commercially available heat flux sensors with thermopiles sandwiched at the interface were used to measure the local temperatures and heat fluxes that is. Omega Corporation, Model HFS-4 devices. The total thickness of the sensors was nominally less then 0.18 mm, and a schematic of the device is shown in Fig. 5.10. By measuring the temperature difference across the center film (AT) and assuming one-dimentional heat transfer, then the heat flux can be measured using the temperature difference and the thermal conductivity of the film. The local temperature is recorded using the thermocouple nearest the barrel. The senors were calibrated at ambient condition with zero heat flux. [Pg.148]

The outside temperature must be taken into account and above all it is necessary to avoid hot kilns, furnaces or stoves or other sources of intense radiation which generate an ambient temperature around the measurement system which lies above the specific acceptable value. Excessive ambient temperatures will result in false pressure indications in thermal conductivity vacuum sensors. [Pg.145]

One of the best features of thermal conductivity detectors with helium carrier gas is the ease of quantitative analysis. It has been shown experimentally that relative response factors, where sample weight is used, are independent of (a) type of detector (filament or thermistor), (b) cell and sensor temperature, (c) concentration of sample, (d) helium flowrate, and (e) detector current. In addition, relative response factors change only slightly within a series of homologous compounds. The first systematic study of TCD responses in helium was done by Rosie and Grob and are summarized in reference (6). [Pg.239]

These measure the change in thermal conductivity of a gas due to variations in pressure—usually in the range 0.75 torr (100 N/m2) to 7.5 x 10"4 torr (0.1 N/m2). At low pressures the relation between pressure and thermal conductivity of a gas is linear and can be predicted from the kinetic theory of gases. A coiled wire filament is heated by a current and forms one arm of a Wheatstone bridge network (Fig. 6.21). Any increase in vacuum will reduce the conduction of heat away from the filament and thus the temperature of the filament will rise so altering its electrical resistance. Temperature variations in the filament are monitored by means of a thermocouple placed at the centre of the coil. A similar filament which is maintained at standard conditions is inserted in another arm of the bridge as a reference. This type of sensor is often termed a Pirani gauge. [Pg.465]


See other pages where Sensors thermal conductivity is mentioned: [Pg.217]    [Pg.1210]    [Pg.217]    [Pg.1210]    [Pg.67]    [Pg.216]    [Pg.216]    [Pg.26]    [Pg.203]    [Pg.276]    [Pg.661]    [Pg.182]    [Pg.500]    [Pg.520]    [Pg.532]    [Pg.330]    [Pg.311]    [Pg.177]    [Pg.283]    [Pg.107]    [Pg.647]    [Pg.409]    [Pg.439]    [Pg.62]    [Pg.51]    [Pg.239]    [Pg.356]    [Pg.376]    [Pg.516]   
See also in sourсe #XX -- [ Pg.2 ]




SEARCH



Conductance sensors

Sensors thermal

Thermal conductive-type humidity sensors

© 2024 chempedia.info