Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Saponification, use

Figure 7.3 Derivatization of organic acid and alcohol compounds by diazomethane (CH2N2 top two reactions) by BSTFA (N, O-bis(trimethylsilyl) trifluoroacetamide middle two reactions), and transmethylation of fatty acid esters by saponification using methanolic sodium hydroxide. Figure 7.3 Derivatization of organic acid and alcohol compounds by diazomethane (CH2N2 top two reactions) by BSTFA (N, O-bis(trimethylsilyl) trifluoroacetamide middle two reactions), and transmethylation of fatty acid esters by saponification using methanolic sodium hydroxide.
Fales et al. 1973) or BF3 in methanol or transmethylation during saponification using methanolic sodium hydroxide (Stern et al 2000). The effect of these processes on alcohol or carboxylic acid functionalities is shown in Fig. 7.3. [Pg.143]

Esters, on the other hand, are very common hydrolytic precursors to carboxylic acids. The traditional reaction for the hydrolysis of esters is basic saponification using sodium hydroxide or potassium hydroxide. While acid catalysis can also be employed, preparative methods usually use base catalysis because formation of the carboxylate salt drives the reaction to the right and gives high yields of products. [Pg.187]

Saponification is often used to extract xanthophylls as well as remove chlorophylls and lipids from samples prior to analysis, as these compounds can interfere with the chromatographic detection. Although saponification with methanol and potassium hydroxide is routinely used to facilitate carotenoid extraction, numerous studies indicate that saponification can also result in losses of carotenoids. For example, Khachik et al.60 demonstrated that saponification actually caused the loss of total carotenoids in samples. Alternatively, enzymatic saponification using lipase can be used to help prevent the loss and isomerization of some carotenoids. Fang et al.32 suggested that saponification of plasma samples should be avoided to prevent unnecessary lycopene degradation. [Pg.68]

The route began with 4-fluorobenzaldehyde 4 and hydantoin 5, which are inexpensive and readily available (Fig. 4). Upon condensation and saponification using a modified literature protocol [12], a-keto acid salt 6 was obtained as a white solid in one step in good yields (77-82%). By this method, an overall quantity of 23 kg of... [Pg.326]

Commercially available dimethyl cyclopropylmalonate 30 was converted to mono ester 31 by careful saponification using sodium hydroxide. Coupling with l-amino-2-hexanol afforded the hydroxyamide 32 which was oxidized to ketone 33 under Swern conditions. Condensation to oxazole 34 was effectively achieved by utilizing a two-phase system consisting of dichloromethane and sulfuric acid. Reaction with deprotonated dimethyl methylphosphonate gave the 0-ketophosphonate 35 in an excellent overall yield. [Pg.351]

To protect vitamins from decomposition, antioxidants such as BHT can be added during sample preparation. Saponification using alkaline alcoholic... [Pg.4896]

These macromonomers were copolymerized with vinyl acetate (Vac) using azo-bisisobutyronitrile (AIBN) as radical initiator to produce PVAc-g-PTHF graft copolymers. Subsequent saponification using NaOH provided poly(vinyl alcohol)-g-PTHF graft copolymers. [Pg.3608]

Fats are hydrolysed to glycerol and fatty acids by boiling with acids and alkalis, by superheated steam and by the action of lipases. If alkalis are used for hydrolysis, the fatty acids combine with the alkalis to form soaps. Alkaline hydrolysis is therefore sometimes called saponification. [Pg.172]

In organic chemistry the term is used to describe the conversion of an ester to an acid and an alcohol (saponification), the addition of the elements of water to a molecule, e.g. the conversion of a nitrile to an amide... [Pg.211]

A selection of important anionic surfactants is displayed in table C2.3.1. Carboxylic acid salts or tire soaps are tire best known anionic surfactants. These materials were originally derived from animal fats by saponification. The ionized carboxyl group provides tire anionic charge. Examples witlr hydrocarbon chains of fewer tlran ten carbon atoms are too soluble and tliose witlr chains longer tlran 20 carbon atoms are too insoluble to be useful in aqueous applications. They may be prepared witlr cations otlrer tlran sodium. [Pg.2575]

Hydrolysis (or saponification) of n-butyl acetate. Boil 4-5 g. of n-butyl acetate (Section 111,95) with 50 ml. of 10 per cent, sodium hydroxide solution under reflux until the odour of the ester can no longer be detected (about 1 hour). Set the condenser for downward distiUation and coUect the first 10 ml. of distillate. Saturate it with potassium carbonate, aUow to stand for 5 minutes, and withdraw all the Uquid into a small pipette or dropper pipette. AUow the lower layer of carbonate solution to run slowly into a test-tube, and place the upper layer into a small test-tube or weighing bottle. Dry the alcohol with about one quarter of its buUr of anhydrous potassium carbonate. Remove the alcohol with a dropper pipette and divide it into two parts use one portion for the determination of the b.p. by the Siwoloboff method (Section 11,12) and convert the other portion into the 3 5-dinitrobenzoate (Section III, 27) and determine the m.p. [Pg.390]

The saponiflcatlon equivalent or the equivalent weight of an ester is that weight in grams of the ester from which one equivalent weight of acid is obtainable by hydrolysis, or that quantity which reacts with one equivalent of alkali. The saponification equivalent is determined in practice by treating a known weight of the ester with a known quantity of caustic alkali used in excess. The residual alkali is then readily determined by titration of the reaction mixture with a standard acid. The amount of alkafi that has reacted with the ester is thus obtained the equivalent can then be readily calculated. [Pg.392]

The experimental details already given for the detection and characterisation of aliphatic esters (determination of saponification equivalents h3 diolysis Section 111,106) apply equally to aromatic esters. A sfight modification in the procediu-e for isolating the products of hydrolysis is necessary for i)henolic (or phenyl) esters since the alkaline solution will contain hoth the alkali phenate and the alkali salt of the organic acid upon acidification, both the phenol and the acid will be hberated. Two methods may be used for separating the phenol and the acid ... [Pg.786]

The addition of about 0-2 g. of an emulsifying agent, such as sodium lauryl or oleyl sulphate, assists in reducing the time required for complete saponification a large flask should be used since there is usually considerable foaming. [Pg.1063]

The determination of the saponification equivalent of an ester by the alcohohc potassium hydroxide method is described in Section 111,106 an alternative procedure using diethylene glycol is given below. This constant should be determined if possible in the prehminary examination, since a knowledge of its value together with the boihng point provides a basis for a fairly good approximation of the size of the ester molecule. [Pg.1064]

Cydopentane reagents used in synthesis are usually derived from cyclopentanone (R.A. Ellison, 1973). Classically they are made by base-catalyzed intramolecular aldol or ester condensations (see also p. 55). An important example is 2-methylcydopentane-l,3-dione. It is synthesized by intramolecular acylation of diethyl propionylsucdnate dianion followed by saponification and decarboxylation. This cyclization only worked with potassium t-butoxide in boiling xylene (R. Bucourt, 1965). Faster routes to this diketone start with succinic acid or its anhydride. A Friedel-Crafts acylation with 2-acetoxy-2-butene in nitrobenzene or with pro-pionyl chloride in nitromethane leads to acylated adducts, which are deacylated in aqueous acids (V.J. Grenda, 1967 L.E. Schick, 1969). A new promising route to substituted cyclopent-2-enones makes use of intermediate 5-nitro-l,3-diones (D. Seebach, 1977). [Pg.81]

The saponification of 0 labeled ethyl propanoate was desenbed in Section 20 11 as one of the significant expenments that demonstrated acyl-oxygen cleavage in ester hydrolysis The 0 labeled ethyl propanoate used in this expenment was prepared from 0 labeled ethyl alcohol which in turn was obtained from acetaldehyde and 0 enriched water Wnte a senes of equations... [Pg.880]

The following factors are the equivalent of 1 mL of normal acid. Where the normality of the solution being used is other than normal, multiply the factors given in the table below by the normality of the solution employed. The equivalents of the esters are based on the results of saponification. [Pg.1153]

Animal fats and vegetable oils are triacylglycerols, or triesters, formed from the reaction of glycerol (1,2, 3-propanetriol) with three long-chain fatty acids. One of the methods used to characterize a fat or an oil is a determination of its saponification number. When treated with boiling aqueous KOH, an ester is saponified into the parent alcohol and fatty acids (as carboxylate ions). The saponification number is the number of milligrams of KOH required to saponify 1.000 g of the fat or oil. In a typical analysis, a 2.085-g sample of butter is added to 25.00 ml of 0.5131 M KOH. After saponification is complete, the excess KOH is back titrated with 10.26 ml of0.5000 M HCl. What is the saponification number for this sample of butter ... [Pg.363]

Butanediol. 1,4-Butanediol [110-63-4] tetramethylene glycol, 1,4-butylene glycol, was first prepared in 1890 by acid hydrolysis of N,]S3-dinitro-l,4-butanediamine (117). Other early preparations were by reduction of succinaldehyde (118) or succinic esters (119) and by saponification of the diacetate prepared from 1,4-dihalobutanes (120). Catalytic hydrogenation of butynediol, now the principal commercial route, was first described in 1910 (121). Other processes used for commercial manufacture are described in the section on Manufacture. Physical properties of butanediol are Hsted in Table 2. [Pg.108]

Functional Group Analysis. The total hydroxyl content of lignin is determined by acetylation with an acetic anhydride—pyridine reagent followed by saponification of the acetate, and followed by titration of the resulting acetic acid with a standard 0.05 W sodium hydroxide solution. Either the Kuhn-Roth (35) or the modified Bethge-Liadstrom (36) procedure may be used to determine the total hydroxyl content. The aUphatic hydroxyl content is determined by the difference between the total and phenoHc hydroxyl contents. [Pg.141]

Acid mixtures are used to oxidize and remove the dark materials. Proper control gives a series of bleached waxes. A white wax requires double refining and reduces the yield to about 30% of the cmde wax input. A series of synthetic waxes is prepared by separating the acids and alcohols produced during saponification of the wax and reesterifying them with acids or alcohols selected to give desired properties of hardness, solubiHty, emulsification, and gloss. [Pg.160]

Preparation. The industrial production of malonic acid is much less important than that of the malonates. Malonic acid is usually produced by acid saponification of malonates (9). Further methods which have been recendy investigated are the ozonolysis of cyclopentadiene [542-92-7] (10), the air oxidation of 1,3-propanediol [504-63-2] (11), or the use of microorganisms for converting nitriles into acids (12). [Pg.465]

Paste rosin sizes are supplied as viscous pastes containing 60—80% solids. These sizes may contain unmodified or fortified rosin that has reacted (ie, been fortified) with either maleic anhydride [108-31-6] or fumaric acid [110-17-8] (see Fig. 3). In either case, the unmodified or fortified rosin is treated with aqueous alkaH so that the degree of neutralization, ie, saponification, varies from 75—100% depending on the physical state desired for the commercial product. Before use, the paste size must be converted to a stable, dilute rosin size emulsion by careful sequential dilution with warm water foUowed by cold water, with good agitation. [Pg.17]

L-Menthol [2216-51-5] (75) and D-menthol [15356-70-4] have been used as chiral auxiharies in the synthesis of optically active mandehc acids. Reduction of (-)-menthol ben2oylfomiate (76) with a stericaHy bulky reducing agent, ie, sodium bis(2-methylethoxy)aluminum hydride (RED-Al), followed by saponification, yields (R)-mandelic acid (32) of 90% ee. [Pg.246]

Uses. AEyl chloride is industrially the most important aHyl compound among all the aHyl compounds (see Chlorocarbons and CHLOROHYDROCARBONS, ALLYL CHLORIDE). It is used mosdy as an intermediate compound for producing epichlorohydrin, which is consumed as a raw material for epoxy resins (qv). World production of AC is approximately 700,000 tons per year, the same as that of epichlorohydrin. Epichlorohydrin is produced in two steps reaction of AC with an aqueous chlorine solution to yield dichloropropanol (mixture of 1,3-dichloropropanol and 2,3-dichloropropanol) by chlorohydrination, and then saponification with a calcium hydroxide slurry to yield epichlorohydrin. [Pg.77]


See other pages where Saponification, use is mentioned: [Pg.470]    [Pg.99]    [Pg.83]    [Pg.500]    [Pg.63]    [Pg.208]    [Pg.4908]    [Pg.285]    [Pg.403]    [Pg.107]    [Pg.106]    [Pg.63]    [Pg.297]    [Pg.85]    [Pg.51]    [Pg.470]    [Pg.99]    [Pg.83]    [Pg.500]    [Pg.63]    [Pg.208]    [Pg.4908]    [Pg.285]    [Pg.403]    [Pg.107]    [Pg.106]    [Pg.63]    [Pg.297]    [Pg.85]    [Pg.51]    [Pg.152]    [Pg.443]    [Pg.136]    [Pg.294]    [Pg.347]    [Pg.347]    [Pg.365]   
See also in sourсe #XX -- [ Pg.328 ]




SEARCH



Saponification

© 2024 chempedia.info