Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ruthenium conditions

Zhang54 published the first and only account of a non-asymmetric rhodium-catalyzed Alder-ene cycloisomerization of 1,6-enynes.55 The conditions developed by Zhang and co-workers are advantageous in that, similar to the ruthenium conditions developed by Trost, selectivity for 1,4-diene products is exhibited. The rhodium conditions are dissimilar from many other transition metal conditions in that only (Z)-olefins give cycloisomerization products. [Pg.575]

Ruthenium. Ruthenium, as a hydroformylation catalyst (14), has an activity signiftcandy lower than that of rhodium and even cobalt (22). Monomeric mthenium carbonyl triphenylphosphine species (23) yield only modest normal to branched regioselectivities under relatively forcing conditions. For example, after 22 hours at 120°C, 10 MPa (1450 psi) of carbon monoxide and hydrogen, biscarbonyltristriphenylphosphine mthenium [61647-76-5] ... [Pg.470]

Syntheses from Dry Metals and Salts. Only metaUic nickel and iron react direcdy with CO at moderate pressure and temperatures to form metal carbonyls. A report has claimed the synthesis of Co2(CO)g in 99% yield from cobalt metal and CO at high temperatures and pressures (91,92). The CO has to be absolutely free of oxygen and carbon dioxide or the yield is drastically reduced. Two patents report the formation of carbonyls from molybdenum and tungsten metal (93,94). Ruthenium and osmium do not react with CO even under drastic conditions (95,96). [Pg.67]

Hydrogenation of 19-nor-A -3-keto steroids also gives 5a- and 5 -product mixtures under the usual conditions but with ruthenium oxide at high pressures only the 5j8-isomer is formed.The presence of a 4-methyl group on a A -3-keto steroid increases the amount of a attack as compared to the parent enone. ... [Pg.128]

Aromatic rings are hydrogenated with a variety of catalysts. However, aromatic alkoxy and hydroxyl substituents are susceptible to hydrogenolysis under most conditions used to saturate the ring. Hydrogenolysis does not occur to any appreciable extent with ruthenium catalysts even though high temperatures and pressures are required. Thus, substituted phenols are... [Pg.136]

Rhodium-on-carbon has also been found to bring about the formation of 2,2 -biquinoline from quinoline, the yield and the percentage conversion being similar to that obtained with palladium-on-carbon. On the other hand, rhodium-on-carbon failed to produce 2,2 -bipyridine from pyridine, and it has not yet been tried with other bases. Experiments with carbon-supported catalysts prepared from ruthenium, osmium, iridium, and platinum have shown that none of these metals is capable of bringing about the formation of 2,2 -biquinoline from quinoline under the conditions used with palladium and rhodium. ... [Pg.188]

Ruthenium is excellent for hydrogenation of aliphatic carbonyl compounds (92), and it, as well as nickel, is used industrially for conversion of glucose to sorbitol (14,15,29,75,100). Nickel usually requires vigorous conditions unless large amounts of catalyst are used (11,20,27,37,60), or the catalyst is very active, such as W-6 Raney nickel (6). Copper chromite is always used at elevated temperatures and pressures and may be useful if aromatic-ring saturation is to be avoided. Rhodium has given excellent results under mild conditions when other catalysts have failed (4,5,66). It is useful in reduction of aliphatic carbonyls in molecules susceptible to hydrogenolysis. [Pg.67]

Noble-metal catalysts can be used under mild conditions. Rhodium 16,24,61,73) has given excellent results. Rhodium seems esp>ecially useful when other catalysts give excessive secondary amine. Ruthenium functions best in aqueous media, but under these conditions it is apt to promote extensive... [Pg.99]

In molecules containing both an acetylenic and a nitro function, either or both may be reduced. Preferential reduction of the acetylenic function is best achieved with palladium (42,44). Ruthenium, on the other hand, favors selective reduction of an aromatic nitro function high yields of (3-aminophenyljacetylene were obtained from the corresponding nitro compound. Catalyst life is prolonged by protection of the acetylenic function (70). Cobalt polysulffde and ruthenium sulffde catalysts have been used similarly, but more vigorous conditions are required (100°C, 25-70 atm) (71). [Pg.109]

Anilines have been reduced successfully over a variety of supported and unsupported metals, including palladium, platinum, rhodium, ruthenium, iridium, (54), cobalt, and nickel. Base metals require high temperatures and pressures (7d), whereas noble metals can be used under much milder conditions. Currently, preferred catalysts in both laboratory or industrial practice are rhodium at lower pressures and ruthenium at higher pressures, for both display high activity and relatively little tendency toward either coupling or hydrogenolysis,... [Pg.123]

Nowadays, rhodium or ruthenium are often the preferred catalysts. Rhodium can be used under mild conditions, whereas ruthenium needs elevated pressures. If pressure is available, it might as well be used even with rhodium, for increased pressure makes more efficient use of the catalyst, as well as decreases whatever hydrogenolysis might occur at lower pressure. Rhodium 7,8,12 20,21,38,39,45,65,66,68,69,75) and ruthenium 18,26 8,52,68,69,72,74) are especially advantageous in reductions of sensitive phenols and phenyl ethers that undergo extensive hydrogenolysis over catalysts such as platinum oxide. [Pg.129]

The sequence has been applied to the synthesis of 1,4-cyclohexanedione from hydroquinone 10), using W-7 Raney nickel as prepared by Billica and Adkins 6), except that the catalyst was stored under water. The use of water as solvent permitted, after hltration of the catalyst, direct oxidation of the reaction mixture with ruthenium trichloride and sodium hypochlorite via ruthenium tetroxide 78). Hydroquinone can be reduced to the diol over /o Rh-on-C at ambient conditions quantitatively (20). [Pg.129]

Ruthenium dissolves anodically in alkaline solutions, as predicted by Pourbaix but its corrosion resistance when made anodic in acid solutions is variable. Under some conditions the volatile and toxic tetroxide is evolved. Osmium is even more reactive anodically than ruthenium. [Pg.939]

At one stage in our project we were surprised to learn that some workers had found difficulties in preparing the tetroxide from the dioxide, until we experienced the same trouble. This problem has now been resolved (3). Ruthenium dioxide is available commercially in both anhydrous and hydrated forms, the former being obtained by direct oxidation of ruthenium metal and the latter by a precipitation process. Only the hydrated form is oxidizable under the mild conditions (2,3) that we use and this form must be specified when purchasing the dioxide. It is noteworthy that the dioxide recovered from carbohydrate oxidations is always easily re-oxidized to the tetroxide. The stoichiometry has been determined of both the oxidation of the dioxide by periodate and reduction of the tetroxide which results on oxidation of an alcohol. [Pg.150]

The most successful class of active ingredient for both oxidation and reduction is that of the noble metals silver, gold, ruthenium, rhodium, palladium, osmium, iridium, and platinum. Platinum and palladium readily oxidize carbon monoxide, all the hydrocarbons except methane, and the partially oxygenated organic compounds such as aldehydes and alcohols. Under reducing conditions, platinum can convert NO to N2 and to NH3. Platinum and palladium are used in small quantities as promoters for less active base metal oxide catalysts. Platinum is also a candidate for simultaneous oxidation and reduction when the oxidant/re-ductant ratio is within 1% of stoichiometry. The other four elements of the platinum family are in short supply. Ruthenium produces the least NH3 concentration in NO reduction in comparison with other catalysts, but it forms volatile toxic oxides. [Pg.79]

Almost all the materials which are being considered as components in automobile exhaust catalyst are somewhat toxic (74)- Most of the compounds considered are low vapor pressure solids which can only escape from the exhaust system as very fine airbone dust particles formed by catalyst attrition. A few compounds, such as the highly toxic metal carbonyls and ruthenium tetroxides, are liquid under ambient conditions and have boiling points less than 100 °C. These compounds are not present in... [Pg.81]

Sheldon et al. have combined a KR catalyzed by CALB with a racemization catalyzed by a Ru(II) complex in combination with TEMPO (2,2,6,6-tetramethylpi-peridine 1-oxyl free radical) [28]. They proposed that racemization involved initial ruthenium-catalyzed oxidation of the alcohol to the corresponding ketone, with TEMPO acting as a stoichiometric oxidant. The ketone was then reduced to racemic alcohol by ruthenium hydrides, which were proposed to be formed under the reaction conditions. Under these conditions, they obtained 76% yield of enantiopure 1-phenylethanol acetate at 70° after 48 hours. [Pg.96]

Racemization of amines is difficult to achieve and usually requires harsh reaction conditions. Reetz et al. developed the first example of DKR of amines using palladium on carbon for the racemization and CALB for the enzymatic resolution [35]. This combination required long reaction times (8 days) to obtain 64% yield in the DKR of 1-phenylethylamine. More recently, Backvall et al. synthesized a novel Shvo-type ruthenium complex (S) that in combination with CALB made it possible to perform DKR of a variety of primary amines with excellent yields and enantioselectivities (Figure 4.13) [36]. [Pg.98]

Synthesis of ruthenocene from fission-product ruthenium isotopes was done by neutron irradiation ofU30g and FeCpj powder mixtures. It was shown that most of the ruthenocene found was actually produced by the decay of a precursor. Subsequent knowledge makes it apparent that the fission product recoils formed a rhodium dicyclopentadienide whose structure was preserved through the decay . The total yield of ruthenocene reached a value of 60% under some experimental conditions and was rarely less than 40%. [Pg.75]

The significant potential of the ruthenium complex 65 was further underlined in the catalytic asymmetric ring-opening/cross metathesis of the cyclic alkene 70 (Scheme 44). This transformation is catalyzed by 5% mol of 65 at room temperature, in air, and with undistilled and nondegassed THF to deliver the corresponding diene 71 in 96% ee and 66% isolated yield. In standard conditions (distilled and degassed THF), the alkene 70 reacts in 75 min to give the diene in 95% ee and 76% yield, with only 0.5 mol % of catalyst. [Pg.219]

These transition-metal catalysts contain electronically coupled hydridic and acidic hydrogen atoms that are transferred to a polar unsaturated species under mild conditions. The first such catalyst was Shvo s diruthenium hydride complex reported in the mid 1980s [41 14], Noyori and Ikatiya developed chiral ruthenium catalysts showing excellent enantioselectivity in the hydrogenation of ketones [45,46]. [Pg.36]

Many late transition metals such as Pd, Pt, Ru, Rh, and Ir can be used as catalysts for steam reforming, but nickel-based catalysts are, economically, the most feasible. More reactive metals such as iron and cobalt are in principle active but they oxidize easily under process conditions. Ruthenium, rhodium and other noble metals are more active than nickel, but are less attractive due to their costs. A typical catalyst consists of relatively large Ni particles dispersed on an AI2O3 or an AlMg04 spinel. The active metal area is relatively low, of the order of only a few m g . ... [Pg.302]


See other pages where Ruthenium conditions is mentioned: [Pg.310]    [Pg.1097]    [Pg.37]    [Pg.135]    [Pg.263]    [Pg.564]    [Pg.172]    [Pg.558]    [Pg.65]    [Pg.783]    [Pg.30]    [Pg.595]    [Pg.13]    [Pg.254]    [Pg.320]    [Pg.322]    [Pg.339]    [Pg.369]    [Pg.440]    [Pg.92]    [Pg.1003]    [Pg.1025]    [Pg.1039]    [Pg.29]    [Pg.34]    [Pg.72]    [Pg.75]    [Pg.315]   
See also in sourсe #XX -- [ Pg.281 , Pg.310 ]




SEARCH



Hydroformylation, ruthenium catalyzed reaction conditions

Ruthenium aqueous-phase conditions

Ruthenium phase-transfer conditions

Ruthenium tetroxide reaction conditions

Ruthenium-catalyzed hydrogenation reaction conditions

© 2024 chempedia.info