Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ruthenium compounds, oxidation

Miscellaneous. Ruthenium dioxide-based thick-film resistors have been used as secondary thermometers below I K (92). Ruthenium dioxide-coated anodes ate the most widely used anode for chlorine production (93). Ruthenium(IV) oxide and other compounds ate used in the electronics industry as resistor material in apphcations where thick-film technology is used to print electrical circuits (94) (see Electronic materials). Ruthenium electroplate has similar properties to those of rhodium, but is much less expensive. Electrolytes used for mthenium electroplating (95) include [Ru2Clg(OH2)2N] Na2[Ru(N02)4(N0)0H] [13859-66-0] and (NH 2P uds(NO)] [13820-58-1], Several photocatalytic cycles that generate... [Pg.178]

Ruthenium-ozyd, n. (any) ruthenium oxide, esp. the sesquioxide, ruthenium(III) oxide, -oxydul, n. ruthenium monoxide, ruthenium-(II) oxide, -saure, /. ruthenic acid, -ver-bindung, /. ruthenium compound. [Pg.374]

Epimerization of 50 at C-3 furnished carba-a-DL-allopyranose (60). Stepwise, 0-isopropylidenation of 50 with 2,2-dimethoxypropane afforded compound 56. Ruthenium tetraoxide oxidation of 56 gave the 3-oxo derivative 57, and catalytic hydrogenation over Raney nickel converted 57 into the 3-epimer 58 exclusively. Hydrolysis of 58, and acetylation, provided the pentaacetate 59, which was converted into 60 on hydrolysis. ... [Pg.32]

Fig. 7.30 Measured Ru isomer shifts in ruthenium compounds with different oxidation states of Ru (from [113] and complemented by values obtained at 4.2 K for Ru(V) oxides of the form Ba3Ru2M09 (M = Mg Ca, Sr Co, Ni, Zn and Cd) from [114])... Fig. 7.30 Measured Ru isomer shifts in ruthenium compounds with different oxidation states of Ru (from [113] and complemented by values obtained at 4.2 K for Ru(V) oxides of the form Ba3Ru2M09 (M = Mg Ca, Sr Co, Ni, Zn and Cd) from [114])...
Nitrosyl perchlorate Organic materials Perchloric acid Alcohols Permanganic acid Organic materials Peroxodisulfuric acid Organic liquids Potassium dioxide Ethanol Potassium perchlorate Ethanol Potassium permanganate Ethanol, etc. Ruthenium(VIII) oxide Organic materials Silver perchlorate Aromatic compounds Sodium peroxide Hydroxy compounds Uranium hexafluoride Aromatic hydrocarbons, etc. Uranyl perchlorate Ethanol See v-halomides Alcohols... [Pg.343]

Catalytic oxidant.1 In combination with N-methylmorpholine N-oxide (7,244) as the stoichiometric oxidant, this ruthenium compound can be used as a catalytic oxidant for oxidation of alcohols to aldehydes or ketones in high yield in CH2C12 at 25°. Addition of 4A molecular sieves is generally beneficial. Racemization is not a problem in oxidation of alcohols with an adjacent chiral center. Tetrabutylammonium perruthenate can also be used as a catalytic oxidant, but the preparation is less convenient. [Pg.302]

Another approach to (R)-(-)-phoracantholide I (245) used a ring enlargement of cyclohexanone (255) which had been alkylated with chiral synthon 256 (Scheme 14) [206]. Thus, compound 257 was prepared in 35% yield on a 7-g scale by alkylation of cyclohexanone with chiral 256. Cyclization with Am-berlyst A-15 provided enol ether 258 that was directly submitted to ruthenium tetroxide oxidation to give oxolactone 259 in a 47% yield. Reduction of the latter with catecholborane via its tosylhydrazone afforded (R)-(-)-phoracan-tholide I (245) in 31% yield. [Pg.227]

Dr. Erickson For those interested in coordination chemistry, certain other transition metal atoms are suitable for Mossbauer spectroscopy. One in particular is ruthenium which is just below iron in the Periodic Table. It is a difficult isotope to work with since it requires helium temperatures almost exclusively. I don t know whether it is possible to work at nitrogen temperatures or not, but Kistner at Brookhaven has examined various ruthenium compounds from the 2-j- to the 8+ oxidation states with interesting results. These are not published yet, but at least his work offers the possibility of going down one element below the other in the Periodic Table to study chemical effects. Osmium, which is below ruthenium, can also be Mossbauered. Some sort of systematic study like this involving elements in the various transition series would be extremely interesting. [Pg.169]

Many ruthenyl and osmyl complexes with O donor ligands are known. The ruthenium compounds are usually prepared from [RuOJ, which can be generated by the oxidation of RuCl3 xH20 or [RUO2] with [104] . The osmium compounds are usually prepared from [OSO4] or K2[0s(0)2(0H)4]. [Pg.790]

All preparations, particularly those involving RuO, should be carried out in a fume cupboard. It must be remembered that there is always a potential hazard involved in the handling of high oxidation state ruthenium compounds and of many of their co-oxidants. [Pg.110]

Hydrogen peroxide converts morpholine into its 4-hydroxy derivative (50JA2280), but TV-alkyl morpholines yield 3-oxo compounds if ruthenium(VIII) oxide or sodium metaperiodate are used as oxidants (76S598). Chlorine at -70 °C oxidizes the thiomorpholine (116) to the dihydro-1,4-thiazine (117) (73JCS(Pl)l32l), but more vigorous conditions result in the formation of S-oxides. [Pg.1014]

The most common oxidation states and the corresponding electronic configuration of ruthenium are +2 (d) and +3 ( ). Compounds are usually octahedral. Compounds in oxidations states from —2 (coordination geometries. Important applications of ruthenium compounds include oxidation of organic compounds and use in dimensionally stable anodes (DSA). [Pg.177]

Cyclic sulfites (68) also are opened by nucleophiles, although they are less reactive than cyclic sulfates and require higher reaction temperatures for the opening reaction. Cyclic sulfite 77, in which the hydroxamic ester is too labile to withstand ruthenium tetroxide oxidation of the sulfite, is opened to 78 in 76% yield by reaction with lithium azide in hot DMF [82], Cyclic sulfite 79 is opened with nucleophiles such as azide ion [83] or bromide ion [84], by using elevated temperatures in polar aprotic solvents. Structures such as 80 generally are not isolated but as in the case of 80 are carried on (when X = N3) to amino alcohols [83] or (when X = Br) to maleates [84] by reduction. Yields are good and for compounds unaffected by the harsher conditions needed to achieve the displacement reaction, use of the cyclic sulfite eliminates the added step of oxidation to the sulfate. [Pg.389]

A variety of methods have been described to solve the task in solution.16 Common oxidative agents for this transformation include various heavy-metal reagents such as chromium-or ruthenium-based oxides, pyri-dine-S03, and dimethylsulfoxide (DMSO) in combination with acetic anhydride, carbodiimide, or oxalyl chloride for activation. One of the most prominent methods for the reliable conversion of sensitive compounds is the Dess-Martin reagent or its nonacetylated equivalent, 1-hydroxy-(17/)-benzo-l,2-iodoxol-3-one-l-oxide (2-iodoxybenzoic acid, IBX). [Pg.371]

The oxidation of benzoin with cerium(IV) in perchloric acid solution is proposed to involve an interaction between Ce4+(aq.) ions and the keto alcohol, resulting in the formation of free radicals. The final product is benzoic acid.66 The rate of oxidation of crotyl alcohol with cerium(IV) is independent of the concentration of Ce(IV). The reaction induced polymerization of acrylonitrile indicating the formation of free radicals. The kinetics and activation parameters for the reaction have been determined.67 For the Ir(III)-catalysed oxidation of methyl ketones68 and cyclic ketones69 with Ce(IV) perchlorate, successive formation of complex between the reductant and Ce(IV) and then with the catalyst has been proposed. Results showed that in acidic solutions, iridium(III) is a more efficient catalyst than osmium and ruthenium compounds. [Pg.99]

Cyclic sulfates provide a useful alternative to epoxides now that it is viable to produce a chiral diol from an alkene. These cyclic compounds are prepared by reaction of the diol with thionyl chloride, followed by ruthenium-catalyzed oxidation of the sulfur (Scheme 9.26).166 This oxidation has the advantage over previous procedures because it only uses a small amount of the transition metal catalyst.167168... [Pg.136]


See other pages where Ruthenium compounds, oxidation is mentioned: [Pg.109]    [Pg.177]    [Pg.783]    [Pg.34]    [Pg.269]    [Pg.274]    [Pg.273]    [Pg.275]    [Pg.2]    [Pg.21]    [Pg.22]    [Pg.292]    [Pg.239]    [Pg.348]    [Pg.482]    [Pg.177]    [Pg.178]    [Pg.114]    [Pg.357]    [Pg.216]    [Pg.217]    [Pg.217]    [Pg.218]    [Pg.199]    [Pg.380]    [Pg.803]    [Pg.256]    [Pg.274]   


SEARCH



Oxidation ruthenium

Oxidizing agents osmium and ruthenium compounds

Ruthenium compounds

Ruthenium oxide

© 2024 chempedia.info