Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rhodium catalyst acetic acid production

As well as the water produced by esterification, quite a high concentration of water (ca. 10 M) is required to maintain high rates and prevent deactivation by precipitation of the rhodium catalyst (see Box 3). Separation of water from the acetic acid product by distillation incurs substantial costs. In addition, high water levels increase the rate of the water gas shift reaction (Section 4.1.3), catalyzed in competition with carbonylation by the rhodium/iodide system... [Pg.122]

Acetic acid is a key commodity building block [1], Its most important derivative, vinyl acetate monomer, is the largest and fastest growing outlet for acetic acid. It accounts for an estimated 40 % of the total global acetic acid consumption. The majority of the remaining worldwide acetic acid production is used to manufacture other acetate esters (i.e., cellulose acetates from acetic anhydride and ethyl, propyl, and butyl esters) and monoehloroacetic acid. Acetic acid is also used as a solvent in the manufacture of terephthalic acid [2] (cf. Section 2.8.1.2). Since Monsanto commercially introduced the rhodium- catalyzed carbonylation process Monsanto process ) in 1970, over 90 % of all new acetic acid capacity worldwide is produced by this process [2], Currently, more than 50 % of the annual world acetic acid capacity of 7 million metric tons is derived from the methanol carbonylation process [2]. The low-pressure reaction conditions, the high catalyst activity, and exceptional product selectivity are key factors for the success of this process in the acetic acid industry [13]. [Pg.106]

C) on a continuous basis, and product solution flows from the reactor into a flash-tank where the initial separation of product from catalyst is achieved. Reduction of pressure in the flash-tank causes vaporization of most of the volatile components while the catalyst remains dissolved in the liquid phase and is recycled back to the reactor. The product stream is directed into a distillation train to remove methyl iodide, water, and heavier by-products from the acetic acid product. The "heavies" include propionic acid and higher-molecular-weight organics arising from condensation reactions of acetaldehyde. Higher alkyl iodides can also form, especially if iodide salts are added to the rhodium catalyst. [Pg.6]

Roth and co-workers [84] at the Monsanto company developed an acetic acid production process by the reaction of methyl alcohol with carbon monoxide in the presence of rhodium carbonyl as the major catalyst. [Pg.20]

In the BASF process, methanol and CO are converted in the liquid phase by a homogeneous Co-based catalyst. The reaction takes place in a high-pressure Hastelloy reactor. In recent decades the BASF process has been increasingly replaced by low-pressure alternatives mainly due to lower investment and operating costs. In the low-pressure Monsanto process methanol and CO react continuously in liquid phase in the presence of a Rhl2 catalyst. In 1996, BP developed a new attractive catalyst based on iridium (Cativa process) the oxidative addition of methyl iodide to iridium is 150-times faster than to rhodium. The search for acetic acid production processes with even lower raw material costs has led to attempts to produce acetic acid by ethane oxidation. In the near future ethane oxidation will most likely not compete with methanol carbonylation (even though ethane is a very cheap and attractive raw material) because of the low ethane conversions, product inhibition problems, and a large variety of by-products. [Pg.749]

The unit has virtually the same flow sheet (see Fig. 2) as that of methanol carbonylation to acetic acid (qv). Any water present in the methyl acetate feed is destroyed by recycle anhydride. Water impairs the catalyst. Carbonylation occurs in a sparged reactor, fitted with baffles to diminish entrainment of the catalyst-rich Hquid. Carbon monoxide is introduced at about 15—18 MPa from centrifugal, multistage compressors. Gaseous dimethyl ether from the reactor is recycled with the CO and occasional injections of methyl iodide and methyl acetate may be introduced. Near the end of the life of a catalyst charge, additional rhodium chloride, with or without a ligand, can be put into the system to increase anhydride production based on net noble metal introduced. The reaction is exothermic, thus no heat need be added and surplus heat can be recovered as low pressure steam. [Pg.77]

In 1996, consumption in the western world was 14.2 tonnes of rhodium and 3.8 tonnes of iridium. Unquestionably the main uses of rhodium (over 90%) are now catalytic, e.g. for the control of exhaust emissions in the car (automobile) industry and, in the form of phosphine complexes, in hydrogenation and hydroformylation reactions where it is frequently more efficient than the more commonly used cobalt catalysts. Iridium is used in the coating of anodes in chloralkali plant and as a catalyst in the production of acetic acid. It also finds small-scale applications in specialist hard alloys. [Pg.1115]

Catalyst A mixture of 5.26 g of rhodium chloride trihydrate, 0.34 g of palladium chloride, 18 g of carbon (Darco G-60), and 200 ml of water is rapidly stirred and heated to 80°. A solution of lithium hydroxide hydrate (2.7 g) in 10 ml of water is added in one portion and the heating discontinued. Stirring is continued overnight, after which the mixture is filtered and washed with 100 ml of 0.5 % aqueous acetic acid. The product is dried in a vacuum oven at 65°. About 20 g of the catalyst is thus obtained. [Pg.42]

Although most industrial catalysts are heterogeneous, a growing number of industrial reactions use homogeneous catalysts. One example is the production of acetic acid. Most of the 2.1 billion kilograms of acetic acid produced annually is used in the polymer industry. The reaction of methanol and carbon monoxide to form acetic acid is catalyzed by a rhodium compound that dissolves in methanol ... [Pg.1110]

The formation of C-C bonds is of key importance in organic synthesis. An important catalytic methodology for generating C-C bonds is provided by carbonylation. In the bulk chemicals arena this is used for the production of acetic acid by methanol carbonylation (Eqn. (9)) in the presence of rhodium- or, more recently, iridium-based catalysts (Maitlis et al, 1998). [Pg.39]

Another metal that has attracted interest for use as electrode material is rhodium, inspired by its high activity in the catalytic oxidation of CO in automotive catalysis. It is found that Rh is a far less active catalyst for the ethanol electro-oxidation reaction than Pt [de Souza et al., 2002 Leung et al., 1989]. Similar to ethanol oxidation on Pt, the main reactions products were CO2, acetaldehyde, and acetic acid. Rh, however, presents a significant better CO2 yield relative to the C2 compounds than Pt, indicating a... [Pg.195]

Historically, the rhodium catalyzed carbonylation of methanol to acetic acid required large quantities of methyl iodide co-catalyst (1) and the related hydrocarboxylation of olefins required the presence of an alkyl iodide or hydrogen iodide (2). Unfortunately, the alkyl halides pose several significant difficulties since they are highly toxic, lead to iodine contamination of the final product, are highly corrosive, and are expensive to purchase and handle. Attempts to eliminate alkyl halides or their precursors have proven futile to date (1). [Pg.329]

The search for catalysts which are able to reverse the ratio of cyclopropane diastereomers in favor of the thermodynamically less stable isomer has met with only moderate success to date. Rh(II) pivalate and some ring-substituted Rh(II) benzoates induce cw-selectivity in the production of permethric acid esters 77,98 99 contrary to rhodium(II) acetate, which gives a 1 1 mixture 74,77,98), and some copper catalysts 98) (Scheme 10). [Pg.109]

Extensive investigations in our laboratories on the deactivation of rhodium and iridium catalysts has shown there to be a number of different mechanisms involved. Both, rhodium and iridium catalysts are generally less stable at higher temperatures, and have more labile ligands than their ruthenium counterparts. All of the catalysts are affected by pH, but the ruthenium catalysts seem to be more readily deactivated by acid. Indeed, these reactions are often quenched with acetic acid, whilst stronger acids are used to quench the rhodium reactions. Each of the catalysts can be deactivated by product inhibition, the ruthenium catalyst with aromatic substrates such as phenylethanol, and the rhodium and iridium ones by bidentate chelating products. [Pg.1238]

RhClCO(dppp) 2] for the sequential construction of an enyne precursor, starting from a malonic acid derivative and allylic acetate, which was converted in situ to the cycloaddition product with excellent yields. Obviously, the Pd complex catalyzes the allylic substitution reaction, while the rhodium catalyst is responsible for the PKR (Eq. 6). [Pg.178]

It is now nearly 40 years since the introduction by Monsanto of a rhodium-catalysed process for the production of acetic acid by carbonylation of methanol [1]. The so-called Monsanto process became the dominant method for manufacture of acetic acid and is one of the most successful examples of the commercial application of homogeneous catalysis. The rhodium-catalysed process was preceded by a cobalt-based system developed by BASF [2,3], which suffered from significantly lower selectivity and the necessity for much harsher conditions of temperature and pressure. Although the rhodium-catalysed system has much better activity and selectivity, the search has continued in recent years for new catalysts which improve efficiency even further. The strategies employed have involved either modifications to the rhodium-based system or the replacement of rhodium by another metal, in particular iridium. This chapter will describe some of the important recent advances in both rhodium- and iridium-catalysed methanol carbonylation. Particular emphasis will be placed on the fundamental organometallic chemistry and mechanistic understanding of these processes. [Pg.187]

The two catalyst components are rhodium and iodide, which can be added in many forms. A large excess of iodide may be present. Rhodium is present as the anionic species RhI2(CO)2. Typically the rhodium concentration is 10 mM and the iodide concentration is 1.5 M, of which 20% occurs in the form of salts. The temperature is about 180 °C and the pressure is 50 bar. The methyl iodide formation from methanol is almost complete, which makes the reaction rate also practically independent of the methanol concentration. In other words, at any conversion level (except for very low methanol levels) the production rate is the same. For a continuous reactor this has the advantage that it can be operated at a high conversion level. As a result the required separation of methanol, methyl acetate, methyl iodide, and rhodium iodide from the product acetic acid is much easier. [Pg.114]

Reppe reaction involves carbonylation of methanol to acetic acid and methyl acetate and subsequent carbonylation of the product methyl acetate to acetic anhydride. The reaction is carried out at 600 atm and 230°C in the presence of iodide-promoted cobalt catalyst to form acetic acid at over 90% yield. In the presence of rhodium catalyst the reaction occurs at milder conditions at 30 to 60 atm and 150-200°C. Carbon monoxide can combine with higher alcohols, however, at a much slower reaction rate. [Pg.189]

Several economic evaluations of the nickel process as compared with the rhodium process, made by Halcon and by independent consultants, agreed that there is savings of about Iq/lb of acetic acid in favor of the nickel process. The difference is derived essentially from utility savings due to the higher reaction rate, simplified separation and lower water concentration. The nickel process consumes less than half the energy needed for the rhodium-catalyzed process. The catalyst inventory, and the equipment needed for its recovery contribute to the higher cost of production in the rhodium case. [Pg.75]


See other pages where Rhodium catalyst acetic acid production is mentioned: [Pg.896]    [Pg.3]    [Pg.256]    [Pg.256]    [Pg.6]    [Pg.562]    [Pg.570]    [Pg.739]    [Pg.21]    [Pg.68]    [Pg.52]    [Pg.378]    [Pg.13]    [Pg.145]    [Pg.147]    [Pg.173]    [Pg.801]    [Pg.6]    [Pg.80]    [Pg.431]    [Pg.115]    [Pg.21]    [Pg.412]    [Pg.104]    [Pg.54]    [Pg.109]    [Pg.480]    [Pg.135]    [Pg.108]   
See also in sourсe #XX -- [ Pg.175 , Pg.176 , Pg.179 ]




SEARCH



Acetals catalyst

Acetate production

Acetic acid catalyst

Acetic acid production

Acetic acid, production catalyst

Catalyst productivity

Catalysts production

Rhodium acetate catalyst

Rhodium catalysts catalyst

© 2024 chempedia.info