Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methanol carbonylation Monsanto process

Ca.ta.lysis, The readily accessible +1 and +3 oxidation states of rhodium make it a useful catalyst. There are several reviews of the catalytic properties of rhodium available (130—132). Rhodium-catalyzed methanol carbonylation (Monsanto process) accounted for 81% of worldwide acetic acid by 1988 (133). The Monsanto acetic acid process is carried out at 175°0 and 1.5 MPa (200 psi). Rhodium is introduced as RhCl3 but is likely reduced in a water... [Pg.180]

The recent dramatic increase in the price of petroleum feedstocks has made the search for high selectivities more urgent. Several new processes based on carbon monoxide sources are currently competing with older oxidation processes.103,104 The more straightforward synthesis of acetic acid from methanol carbonylation (Monsanto process) has made the Wacker process obsolete for the manufacture of acetaldehyde, which used to be one of the main acetic acid precursors. Several new methods for the synthesis of ethylene glycol have also recently emerged and will compete with the epoxidation of ethylene, which is not sufficiently selective. The direct synthesis of ethylene... [Pg.329]

Fig. 22.4. Acetic acid via methanol carbonylation—Monsanto process. (Cheim Systems Report No. 8S-7. Copyr/ghr Chem Systems /nc,. Tarrytown. NY. and used by permission of copyright owner.)... Fig. 22.4. Acetic acid via methanol carbonylation—Monsanto process. (Cheim Systems Report No. 8S-7. Copyr/ghr Chem Systems /nc,. Tarrytown. NY. and used by permission of copyright owner.)...
The first commercial plant for the chemical production of acetic acid came on line in 1916. Qearly, this was the beginning of the expanding market for acetic add as an important commodity chemical in industry (Agreda and Zoeller 1993). Chemical synthesis of acetic acid is dependent upon petrochemicals from nomenewable crude oil resources. There are three major processes in use today oxidation of acetylene-derived acetaldehyde, catalytic butane oxidation, and the carbonylation of methanol (the Monsanto process Agreda and Zoeller 1993). Production hy the Monsanto process provides the major source of glacial acetic add used in industry worldwide. In the United States, chemical synthesis of acetic acid was reported as 2.34 x 10 t/year in 1995 (Kirschner 1996), which demonstrates the importance of acetic acid as a commodity chemical in industry. [Pg.7]

For the immediate future, chemical synthesis of acetic acid as a commodity chemical from petrochemicals is the major method for production throughout the world. O Figure 1.5 diagrams the major chemical intermediates (precursors of the major industrial products) formed from acetic acid. Production of vinyl acetate, chloroacetic acid, acetic anhydride, and acetate esters requires glacial acetic acid, which is most inexpensively produced by the carbonylation of methanol, the Monsanto process, or by catalytic oxidation... [Pg.20]

Figure 5-7. The Monsanto methanol carbonylation process for producing acetic acid. ... Figure 5-7. The Monsanto methanol carbonylation process for producing acetic acid. ...
Such a complex, cw-Rh(CO)2I2, is the active species in the Monsanto process for low-pressure carbonylation of methanol to ethanoic acid. The reaction is first order in iodomethane and in the rhodium catalyst the rate-determining step is oxidative addition between these followed by... [Pg.103]

The carbonylation of methanol was developed by Monsanto in the late 1960s. It is a large-scale operation employing a rhodium/iodide catalyst converting methanol and carbon monoxide into acetic acid. An older method involves the same carbonylation reaction carried out with a cobalt catalyst (see Section 9.3.2.4). For many years the Monsanto process has been the most attractive route for the preparation of acetic acid, but in recent years the iridium-based CATIVA process, developed by BP, has come on stream (see Section 9.3.2) ... [Pg.142]

It is now nearly 40 years since the introduction by Monsanto of a rhodium-catalysed process for the production of acetic acid by carbonylation of methanol [1]. The so-called Monsanto process became the dominant method for manufacture of acetic acid and is one of the most successful examples of the commercial application of homogeneous catalysis. The rhodium-catalysed process was preceded by a cobalt-based system developed by BASF [2,3], which suffered from significantly lower selectivity and the necessity for much harsher conditions of temperature and pressure. Although the rhodium-catalysed system has much better activity and selectivity, the search has continued in recent years for new catalysts which improve efficiency even further. The strategies employed have involved either modifications to the rhodium-based system or the replacement of rhodium by another metal, in particular iridium. This chapter will describe some of the important recent advances in both rhodium- and iridium-catalysed methanol carbonylation. Particular emphasis will be placed on the fundamental organometallic chemistry and mechanistic understanding of these processes. [Pg.187]

Methanol carbonylation has been the subject of several reviews, including Denis Forster s seminal studies at Monsanto [4-10]. This chapter will not seek to repeat all the information included in those reviews but will focus on the role of organometallic chemistry in recent process development. [Pg.188]

One approach which enables lower water concentrations to be used for rhodium-catalysed methanol carbonylation is the addition of iodide salts, especially lithium iodide, as exemplified by the Hoechst-Celanese Acid Optimisation (AO) technology [30]. Iodide salt promoters allow carbonylation rates to be achieved at low (< 4 M) [H2O] that are comparable with those in the conventional Monsanto process (where [H20] > 10 M) while maintaining catalyst stability. In the absence of an iodide salt promoter, lowering the water concentration would result in a decrease in the proportion of Rh existing as [Rh(CO)2l2] . However, in the iodide-promoted process, a higher concentration of methyl acetate is also employed, which reacts with the other components as shown in Eqs. 3, 7 and 8 ... [Pg.192]

It was discovered by Monsanto that methanol carbonylation could be promoted by an iridium/iodide catalyst [1]. However, Monsanto chose to commercialise the rhodium-based process due to its higher activity under the conditions used. Nevertheless, considerable mechanistic studies were conducted into the iridium-catalysed process, revealing a catalytic mechanism with similar key features but some important differences to the rhodium system [60]. [Pg.203]

The commercialisation of an iridium-based process is the most significant new development in methanol carbonylation catalysis in recent years. Originally discovered by Monsanto, iridium catalysts were considered uncompetitive relative to rhodium on the basis of lower activity, as often found for third row transition metals. The key breakthrough for achieving high catalytic rates for an iridium catalyst was the identification of effective promoters. Recent mechanistic studies have provided detailed insight into how the promoters influence the subtle balance between neutral and anionic iridium complexes in the catalytic cycle, thereby enhancing catalytic turnover. [Pg.209]

In SILP carbonylation we have introduced a new methanol carbonylation SILP Monsanto catalyst, which is different from present catalytic alcohol carbonylation technologies, by using an ionic liquid as reaction medium and by offering an efficient use of the dispersed ionic liquid-based rhodium-iodide complex catalyst phase. In perspective the introduced fixed-bed SILP carbonylation process design requires a smaller reactor size than existing technology in order to obtain the same productivity, which makes the SILP carbonylation concept potentially interesting for technical applications. [Pg.159]

The third and now preferred method of acetic acid manufacture is the carbonylation of methanol (Monsanto process), involving reaction of methanol and carbon monoxide (both derived from methane). This is discussed in Chapter 12, Section 3. [Pg.151]

Another way to produce acetic acid is based on a carbonylation of methanol in the so called Monsanto process, which is the dominant technology for the production of acetic acid today [15]. Acetic acid then is converted to VAM by addition of ethylene to acetic acid in the gas phase using heterogeneous catalysts usually based on palladium, cadmium, gold and its alloys (vinylation reaction 3 in Fig. 2) [16] supported on silica structures. [Pg.140]

The direct carbonylation of methanol yielding acetic acid, the Monsanto process, represents the best route for acetic acid. Carbonylation of methyl acetate, obtained from methanol and acetic acid, gives acetic anhydride, a technology commercialized by Tennessee Eastman (22). It is noteworthy that this process is based on coal derived synthesis gas to give as the final product cellulose acetate. A combination of Monsanto and Tennessee Eastman technology opens the door for the combined synthesis of acetic acid and acetic anhydride. [Pg.8]

Acetic Acid. Although at the time of this writing Monsanto s Rh-catalyzed methanol carbonylation (see Section 7.2.4) is the predominant process in the manufacture of acetic acid, providing about 95% of the world s production, some acetic acid is still produced by the air oxidation of n-butane or light naphtha. n-Butane is used mainly in the United States, whereas light naphtha fractions from petroleum refining are the main feedstock in Europe. [Pg.504]

As mentioned in the previous section, the carbonylation of methanol to acetic acid is an important industrial process. Whereas the [Co2(CO)s]-catalyzed, iodide-promoted reaction developed by BASF requires pressures of the order of 50 MPa, the Monsanto rhodium-catalyzed synthesis, which is also iodide promoted and which was discovered by Roth and co-workers, can be operated even at normal pressure, though somewhat higher pressures are used in the production units.4,1-413 The rhodium-catalyzed process gives a methanol conversion to acetic acid of 99%, against 90% for the cobalt reaction. The mechanism of the Monsanto process has been studied by Forster.414 The anionic complex m-[RhI2(CO)2]- (95) initiates the catalytic cycle, which is shown in Scheme 26. [Pg.272]

Acetic acid (CH3COOH) is a bulk commodity chemical with a world production of about 3.1 x 106 Mg/year, a demand increasing at a rate of +2.6% per year and a market price of US 0.44-0.47 per kg (Anon., 2001a). It is obtained primarily by the Monsanto or methanol carbonylation process, in which carbon monoxide reacts with methanol under the influence of a rhodium complex catalyst at 180°C and pressures of 30-40 bar, and secondarily by the oxidation of ethanol (Backus et al., 2003). The acetic fermentation route is limited to the food market and leads to vinegar production from several raw materials (e.g., apples, malt, grapes, grain, wines, and so on). [Pg.326]

In this chapter we discuss the mechanistic and other details of a few industrial carbonylation processes. These are carbonylation of methanol to acetic acid, methyl acetate to acetic anhydride, propyne to methyl methacrylate, and benzyl chloride to phenyl acetic acid. Both Monsanto and BASF manufacture acetic acid by methanol carbonylation, Reaction 4.1. The BASF process is older than the Monsanto process. The catalysts and the reaction conditions for the two processes are also different and are compared in the next section. Carbonylation of methyl acetate to acetic anhydride, according to reaction 4.2, is a successful industrial process that has been developed by Eastman Kodak. The carbonylation of propyne (methyl acetylene) in methanol to give methyl methacrylate has recently been commercialized by Shell. The Montedison carbonylation process for the manufacture of phenyl acetic acid from benzyl chloride is noteworthy for the clever combination of phase-transfer and organometallic catalyses. Hoechst has recently reported a novel carbonylation process for the drug ibuprofen. [Pg.55]

The BASF cobalt/iodide catalyzed process for methanol carbonylation was quite quickly superseded by a rhodium/iodide catalyzed process discovered at Monsanto and first commercialized in 1970 at a plant in Texas City. The Monsanto process was a significant advance and became one of the few large tonnage processes to use a homogeneous transition metal catalyst. It was later... [Pg.121]


See other pages where Methanol carbonylation Monsanto process is mentioned: [Pg.176]    [Pg.176]    [Pg.324]    [Pg.1811]    [Pg.743]    [Pg.70]    [Pg.171]    [Pg.264]    [Pg.229]    [Pg.147]    [Pg.125]    [Pg.157]    [Pg.206]    [Pg.190]    [Pg.2]    [Pg.152]    [Pg.166]    [Pg.63]   
See also in sourсe #XX -- [ Pg.230 ]




SEARCH



Carbonyl process

Carbonylation Monsanto process

Carbonylation processes

Methanol carbonylations

Monsanto

Monsanto methanol carbonylation

Monsanto process

Processes methanol carbonylation

© 2024 chempedia.info