Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rhodium oxo process

Ligand-Modified Rhodium Process. The triphenylphosphine-modified rhodium oxo process, termed the LP Oxo process, is the industry standard for the hydroformylation of ethylene and propylene as of this writing (ca 1995). It employs a triphenylphosphine [603-35-0] (TPP) (1) modified rhodium catalyst. The process operates at low (0.7—3 MPa (100—450 psi)) pressures and low (80—120°C) temperatures. Suitable sources of rhodium are the alkanoate, 2,4-pentanedionate, or nitrate. A low (60—80 kPa (8.7—11.6 psi)) CO partial pressure and high (10—12%) TPP concentration are critical to obtaining a high (eg, 10 1) normal-to-branched aldehyde ratio. The process, first commercialized in 1976 by Union Carbide Corporation in Ponce, Puerto Rico, has been ficensed worldwide by Union Carbide Corporation and Davy Process Technology. [Pg.467]

A detailed discussion on surfactants from secondary alcohols which are relatively little known in the U.S. is included, together with a review of linear alcohol processes (Oxo and Ziegler) and detergent applications of the Ziegler alcohols. Also covered is a discussion of the revolutionary rhodium oxo process which has already resulted in a number of new plants—announced, under construction, or in operation, worldwide—for the manufacture of n-butanol and 2-ethylhexanol. Applications of these alcohols are also discussed. [Pg.8]

Manufacture of /i-Butanol and 2-Ethylhexanol by the Rhodium Oxo Process and Applications of the Alcohols... [Pg.77]

Krupp Udhe/Celanese GmbH/ Rhone-Poulenc Butyraldehyde, n Propylene and synthesis gas Low-pressure rhodium oxo process reacts propylene with synthesis NA NA... [Pg.139]

Among the most significant developments in the field of catalysis in recent years have been the discovery and elucidation of various new, and often novel, catalytic reactions of transition metal ions and coordination compounds 13, 34). Examples of such reactions are the hydrogenation of olefins catalyzed by complexes of ruthenium (36), rhodium (61), cobalt (52), platinum (3, 26, 81), and other metals the hydroformylation of olefins catalyzed by complexes of cobalt or rhodium (Oxo process) (6, 46, 62) the dimerization of ethylene (i, 23) and polymerization of dienes (15, 64, 65) catalyzed by complexes of rhodium double-bond migration in olefins catalyzed by complexes of rhodium (24,42), palladium (42), cobalt (67), platinum (3, 5, 26, 81), and other metals (27) the oxidation of olefins to aldehydes, ketones, and vinyl esters, catalyzed by palladium chloride (Wacker process) (47, 48, 49,... [Pg.1]

Butanol outlets dominate return on 2-ethjrlhexanol" Europ. Chem. News, 50-60 (18/25 Dec. 197(8 O Rourke, Kavasmaneck, P. R Uhl, R. E, Manufacture of n-butanol and 2-ethylhexanoi by the rhodium Oxo process and applications of the alcohols", ACS I79th National Meeting, Houston, Texas (23/26 March 1980). [Pg.365]

Process Technology. In a typical oxo process, primary alcohols are produced from monoolefins in two steps. In the first stage, the olefin, hydrogen, and carbon monoxide [630-08-0] react in the presence of a cobalt or rhodium catalyst to form aldehydes, which are hydrogenated in the second step to the alcohols. [Pg.457]

The search for catalyst systems which could effect the 0x0 reaction under milder conditions and produce higher yields of the desired aldehyde resulted in processes utilizing rhodium. Oxo capacity built since the mid-1970s, both in the United States and elsewhere, has largely employed tertiary phosphine-modified rhodium catalysts. For example, over 50% of the world s butyraldehyde (qv) is produced by the LP Oxo process, technology Hcensed by Union Carbide Corporation and Davy Process Technology. [Pg.465]

The odd-carbon stmcture and the extent of branching provide amyl alcohols with unique physical and solubiUty properties and often offer ideal properties for solvent, surfactant, extraction, gasoline additive, and fragrance appHcations. Amyl alcohols have been produced by various commercial processes ia past years. Today the most important iadustrial process is low pressure rhodium-cataly2ed hydroformylation (oxo process) of butenes. [Pg.370]

Propane, 1-propanol, and heavy ends (the last are made by aldol condensation) are minor by-products of the hydroformylation step. A number of transition-metal carbonyls (qv), eg, Co, Fe, Ni, Rh, and Ir, have been used to cataly2e the oxo reaction, but cobalt and rhodium are the only economically practical choices. In the United States, Texas Eastman, Union Carbide, and Hoechst Celanese make 1-propanol by oxo technology (11). Texas Eastman, which had used conventional cobalt oxo technology with an HCo(CO)4 catalyst, switched to a phosphine-modified Rh catalyst ia 1989 (11) (see Oxo process). In Europe, 1-propanol is made by Hoechst AG and BASE AG (12). [Pg.118]

The switch from the conventional cobalt complex catalyst to a new rhodium-based catalyst represents a technical advance for producing aldehydes by olefin hydroformylation with CO, ie, by the oxo process (qv) (82). A 200 t/yr CSTR pilot plant provided scale-up data for the first industrial,... [Pg.522]

Historically, isobutyl alcohol was an unwanted by-product of the propylene Oxo reaction. Indeed, isobutyraldehyde the precursor of isobutyl alcohol was occasionally burned for fuel. However, more recentiy isobutyl alcohol has replaced -butyl alcohol in some appHcations where the branched alcohol appears to have preferred properties and stmcture. However, suppHes of isobutyl alcohol have declined relative to overall C-4 alcohols, especially in Europe, with the conversion of many Oxo plants to rhodium based processes which give higher normal to isobutyraldehyde isomer ratios. Further the supply of isobutyl alcohol at any given time can fluctuate greatly, since it is the lowest valued derivative of isobutyraldehyde, after neopentyl glycol, methyl isoamyl ketone and certain condensation products (10). [Pg.358]

In the mid-1980s, Ruhrchemie (now Hoechst) converted its oxo capacity to a proprietary water soluble rhodium catalyzed process (27,28), a technology developed jointly with Rhc ne-Poulenc. Product separation in this process is by decantation. Isomer ratios of n- to isobutyraldehyde of about 20 1 are obtained. [Pg.380]

A new homogeneous process for hydroformylation of olefins using a water-soluble catalyst has been developed (40). The catalyst is based on a rhodium complex and utilizes a water-soluble phosphine such as tri(M-sulfophenyl)phosphine. The use of an aqueous phase simplifies the separation of the catalyst and products (see Oxo process). [Pg.51]

With the exception of acetic, acryUc, and benzoic all other acids in Table 1 are primarily produced using oxo chemistry (see Oxo process). Propionic acid is made by the Hquid-phase oxidation of propionaldehyde, which in turn is made by appHcation of the oxo synthesis to ethylene. Propionic acid can also be made by oxidation of propane or by hydrocarboxylation of ethylene with CO and presence of a rhodium (2) or iridium (3) catalyst. [Pg.94]

C-19 dicarboxyhc acid can be made from oleic acid or derivatives and carbon monoxide by hydroformylation, hydrocarboxylation, or carbonylation. In hydroformylation, ie, the Oxo reaction or Roelen reaction, the catalyst is usually cobalt carbonyl or a rhodium complex (see Oxo process). When using a cobalt catalyst a mixture of isomeric C-19 compounds results due to isomerization of the double bond prior to carbon monoxide addition (80). [Pg.63]

Eventually, the spent catalyst solution has to leave the oxo loop for work-up. The Ruhrchemie works of Celanese AG in Oberhausen (Germany) operate several rhodium-based oxo processes besides the well-known Ruhrchemie/Rhone-Poulenc process (RCF1/RP, the described low pressure oxo process with TPPTS-modified Rh catalyst), there are the Ruhrchemie process with an unmodified Rh catalyst at high pressure (comparable to the late ICI process [76] this variant is for the benefit of a high iso/n ratio... [Pg.128]

The compound of the distinct three oxo processes, all rhodium-based, enables a highly efficient recovery system to be achieved. Figure 5.17 describes the TPPTS manufacture and its use for the preparation of the rhodium catalyst, using either freshly introduced Rh acetate or recycled Rh 2-ethylhexanoate. The recycle technique of the RCH/RP process and its performance is depicted earlier. Spent Rh-TPPTS solutions are worked-up (see Figures 5.18 and 5.19), the resulting TPPTS returns to the RCH/RP process. The rhodium portion passes also a work-up stage and is reformulated as Rh 2-ethylhexanoate. This Rh salt may serve all various oxo processes of the oxo loop and will compensate for possible Rh losses as mentioned earlier. [Pg.129]

Whereas this important quotient is calculated solely from the product spectrum, process simplifications are a consequence of combining the rhodium catalyst with the special two-phase process. Compared with the conventional oxo process and with other variants (which, for example, include disadvantegeously thermal separation of the oxo reaction products from the catalyst) the procedure is considerably simplified (as shown in several papers, e.g., [2,12]). [Pg.133]

To make butyraldehyde, the precursor for NBA, the so-called Oxo process is used, reacting chemical grade propylene with hydrogen and. carbon monoxide at 250-300°F and 3500-4000 psi. See Figure 14-4.) Under those conditions, both feeds are liquids. The catalyst is an oil-soluble cobalt carbonyl complex dissolved in the propylene. If rhodium-based catalysts or complexes based on rhodium carbonyls and triphenyl phosphine... [Pg.205]

Typical reaction conditions of the RCH/RP process37,38,336 are T=120°C P=50 bar / =1.01 P/Rh=50-100 aqueous/organic phase=6 concentration of rhodium 10-1000 ppm pH of the aqueous phase 4-10. The RhH(CO)(tppts)3 catalyst345 is prepared in situ from rhodium-2-ethylhexanoate, for example, by addition of tppts in water. The process engineering is enormously simplified in comparison to classical oxo plants. Figure 1 shows the flowsheet of the RCH/RP oxo process.38,424... [Pg.140]

Union Carbide invented the industrial use of highly active ligand-modified rhodium complexes.90-93 [RhH(CO)(PPh3)3], the most widely used catalyst, operates under mild reaction conditions (90-120°C, 10-50 atm). This process, therefore, is also called low-pressure oxo process. Important features of the rhodium-catalyzed hydroformylation are the high selectivity to n-aldehydes (about 92%) and the formation of very low amounts of alcohols and alkanes. Purification of the reactants, however, is necessary because of low catalyst concentrations. [Pg.378]

A key economic problem in all industrial oxo processes is the recovery of the homogeneous catalysts. It is important in the case of both the original, relatively unstable cobalt and the very expensive rhodium complexes. A number of special procedures were developed for catalyst recovery and recycling.75,79... [Pg.379]

The reaction of an alkere with carbon monoxide and hydrogen, catalyzed by cobalt or rhodium salts, to form an aldehyde is called hxdmfonnylaiion (or sometimes the oxo process) ... [Pg.891]

Hydroformylation, or the oxo process, is the reaction of olefins with CO and hydrogen to make aldehydes. The catalyst base is cobalt naphthenate which transforms to cobalt hydrocarbonyl in place. A rhodium complex that is more stable and functions at a lower temperature also is used. [Pg.564]

Hydroformylation - [CARBON MONOXIDE] (Vol 5) - [OXO PROCESS] (Vol 17) -of allyl alcohol [ALLYL ALCOHOL AND MONOALLYL DERIVATIVES] (Vol 2) -catalysts for [CATALYSIS] (Vol 5) -C-19 dicarboxylic acids from [DICARBOXYLIC ACIDS] (Vol 8) -of ethylene [ETHYLENE] (Vol 9) -of ethylene [PROPYL ALCOHOLS - N-PROPYLALCOLHOL] (Vol 20) -of maleate and fumarate esters [MALEIC ANHYDRIDE, MALEIC ACID AND FUMARIC ACID] (Vol 15) -phosphine catalyst [PHOSPHORUS COMPOUNDS] (Vol 18) -platinum-group metal catalysts for [PLATINUM-GROUP METALS] (Vol 19) -rhodium catalysis [PLATINUM-GROUP METALS, COMPOUNDS] (Vol 19) -ruthenium cmpds or catalyst [PLATINUM-GROUP METALS, COMPOUNDS] (Vol 19) -use of coordination compounds [COORDINATION COMPOUNDS] (Vol 7)... [Pg.489]


See other pages where Rhodium oxo process is mentioned: [Pg.118]    [Pg.118]    [Pg.416]    [Pg.467]    [Pg.469]    [Pg.374]    [Pg.118]    [Pg.171]    [Pg.1037]    [Pg.799]    [Pg.162]    [Pg.32]    [Pg.140]    [Pg.149]    [Pg.204]    [Pg.106]    [Pg.137]    [Pg.810]    [Pg.10]   


SEARCH



Oxo process

Rhodium processes

© 2024 chempedia.info