Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reverse osmosis development

Membrane technology may become essential if zero-discharge mills become a requirement or legislation on water use becomes very restrictive. The type of membrane fractionation required varies according to the use that is to be made of the treated water. This issue is addressed in Chapter 35, which describes the apphcation of membrane processes in the pulp and paper industry for treatment of the effluent generated. Chapter 36 focuses on the apphcation of membrane bioreactors in wastewater treatment. Chapter 37 describes the apphcations of hollow fiber contactors in membrane-assisted solvent extraction for the recovery of metallic pollutants. The apphcations of membrane contactors in the treatment of gaseous waste streams are presented in Chapter 38. Chapter 39 deals with an important development in the strip dispersion technique for actinide recovery/metal separation. Chapter 40 focuses on electrically enhanced membrane separation and catalysis. Chapter 41 contains important case studies on the treatment of effluent in the leather industry. The case studies cover the work carried out at pilot plant level with membrane bioreactors and reverse osmosis. Development in nanofiltration and a case study on the recovery of impurity-free sodium thiocyanate in the acrylic industry are described in Chapter 42. [Pg.825]

Acrylonitrile fibers treated with hydroxides have been reported to be useful for adsorption of uranium from seawater (105). Tubular fibers for reverse osmosis gas separations, ion exchange, ultrafiltration, and dialysis are a significant new appHcation of acryUc fibers and other synthetics. Commercial acryUc fibers have already been developed by Nippon Zeon, Asahi, and Rhc ne-Poulenc. [Pg.286]

Fig. 10. Composite hoUow-fiber membranes (a) polysulfone boUow fiber coated witb fiiran resin. A and B denote fiiran resin surface and porous support, respectively (b) cross section of composite boUow fiber (PEI/TDI coated on polysulfone matrix). C, D, and E denote tightly cross-linked surface, "gutter" gel layer, and porous support, respectively. Both fibers were developed for reverse osmosis appHcation (15). Fig. 10. Composite hoUow-fiber membranes (a) polysulfone boUow fiber coated witb fiiran resin. A and B denote fiiran resin surface and porous support, respectively (b) cross section of composite boUow fiber (PEI/TDI coated on polysulfone matrix). C, D, and E denote tightly cross-linked surface, "gutter" gel layer, and porous support, respectively. Both fibers were developed for reverse osmosis appHcation (15).
Although these composite fibers were developed for reverse osmosis their acceptance in the desalination industry has been limited due to insufficient selectivity and oxidative stabiUty. The concept, however, is extremely viable composite membrane fiat films made from interfacial polymerisation (20) have gained wide industry approval. HoUow fibers using this technique to give equivalent properties and life, yet to be developed, should be market tested during the 1990s. [Pg.151]

The seminal discovery that transformed membrane separation from a laboratory to an industrial process was the development, in the early 1960s, of the Loeb-Sourirajan process for making defect-free, high flux, asymmetric reverse osmosis membranes (5). These membranes consist of an ultrathin, selective surface film on a microporous support, which provides the mechanical strength. The flux of the first Loeb-Sourirajan reverse osmosis membrane was 10 times higher than that of any membrane then avaUable and made reverse osmosis practical. The work of Loeb and Sourirajan, and the timely infusion of large sums of research doUars from the U.S. Department of Interior, Office of Saline Water (OSW), resulted in the commercialization of reverse osmosis (qv) and was a primary factor in the development of ultrafiltration (qv) and microfiltration. The development of electro dialysis was also aided by OSW funding. [Pg.60]

Interfdci l Composite Membra.nes, A method of making asymmetric membranes involving interfacial polymerization was developed in the 1960s. This technique was used to produce reverse osmosis membranes with dramatically improved salt rejections and water fluxes compared to those prepared by the Loeb-Sourirajan process (28). In the interfacial polymerization method, an aqueous solution of a reactive prepolymer, such as polyamine, is first deposited in the pores of a microporous support membrane, typically a polysulfone ultrafUtration membrane. The amine-loaded support is then immersed in a water-immiscible solvent solution containing a reactant, for example, a diacid chloride in hexane. The amine and acid chloride then react at the interface of the two solutions to form a densely cross-linked, extremely thin membrane layer. This preparation method is shown schematically in Figure 15. The first membrane made was based on polyethylenimine cross-linked with toluene-2,4-diisocyanate (28). The process was later refined at FilmTec Corporation (29,30) and at UOP (31) in the United States, and at Nitto (32) in Japan. [Pg.68]

Spira.1- Wound Modules. Spiral-wound modules were used originally for artificial kidneys, but were fuUy developed for reverse osmosis systems. This work, carried out by UOP under sponsorship of the Office of Saline Water (later the Office of Water Research and Technology) resulted in a number of spiral-wound designs (63—65). The design shown in Figure 21 is the simplest and most common, and consists of a membrane envelope wound around a perforated central coUection tube. The wound module is placed inside a tubular pressure vessel, and feed gas is circulated axiaUy down the module across the membrane envelope. A portion of the feed permeates into the membrane envelope, where it spirals toward the center and exits through the coUection tube. [Pg.71]

Pervaporation is a relatively new process with elements in common with reverse osmosis and gas separation. In pervaporation, a liquid mixture contacts one side of a membrane, and the permeate is removed as a vapor from the other. Currendy, the only industrial application of pervaporation is the dehydration of organic solvents, in particular, the dehydration of 90—95% ethanol solutions, a difficult separation problem because an ethanol—water azeotrope forms at 95% ethanol. However, pervaporation processes are also being developed for the removal of dissolved organics from water and the separation of organic solvent mixtures. These applications are likely to become commercial after the year 2000. [Pg.76]

Reverse Osmosis. This was the first membrane-based separation process to be commercialized on a significant scale. The breakthrough discovery that made reverse osmosis (qv) possible was the development of the Loeb-Sourirajan asymmetric cellulose acetate membrane. This membrane made desalination by reverse osmosis practical within a few years commercial plants were installed. The total worldwide market for reverse osmosis membrane modules is about 200 million /yr, spHt approximately between 25% hoUow-ftber and 75% spiral-wound modules. The general trend of the industry is toward spiral-wound modules for this appHcation, and the market share of the hoUow-ftber products is gradually falling (72). [Pg.80]

The first reverse osmosis modules made from cellulose diacetate had a salt rejection of approximately 97—98%. This was enough to produce potable water (ie, water containing less than 500 ppm salt) from brackish water sources, but was not enough to desalinate seawater efficiently. In the 1970s, interfacial composite membranes with salt rejections greater than 99.5% were developed, making seawater desalination possible (29,30) a number of large plants are in operation worldwide. [Pg.80]

One unique appHcation area for PSF is in membrane separation uses. Asymmetric PSF membranes are used in ultrafiltration, reverse osmosis, and ambulatory hemodialysis (artificial kidney) units. Gas-separation membrane technology was developed in the 1970s based on a polysulfone coating appHed to a hoUow-fiber support. The PRISM (Monsanto) gas-separation system based on this concept has been a significant breakthrough in gas-separation... [Pg.469]

Developments and advances in both membrane materials and reverse osmosis modules have increased the range of appHcations to which RO can be apphed. Whereas the RO industry has developed around water desalination (9,53,73,74), RO has become a significant cornerstone in other industries. [Pg.153]

Reverse osmosis processes for desalination were first appHed to brackish water, which has a lower I DS concentration than seawater. Brackish water has less than 10,000 mg/L IDS seawater contains greater than 30,000 mg/L IDS. This difference in IDS translates into a substantial difference in osmotic pressure and thus the RO operating pressure required to achieve separation. The need to process feed streams containing larger amounts of dissolved soHds led to the development of RO membranes capable of operating at pressures approaching 10.3 MFa (1500 psi). Desalination plants around the world process both brackish water and seawater (15). [Pg.154]

Reverse Osmosis. In reverse osmosis (qv), a solution or suspension flows under pressure through a membrane the product is withdrawn on the other side. This process can treat dissolved soHds concentrations ranging from 1 mg/L to 35 g/L (14). The principal constraint is the requirement that the waste material be relatively nonfouling. Recent advances have been mosdy in membrane development, and pilot studies are required (15). Energy costs can be significant, and it is frequently necessary to pretreat influent in order to minimize fouhng. Reverse osmosis can deal with particles < 1 to 600 nm in size. [Pg.294]

Reverse Osmosis. A reverse osmosis (RO) process has been developed to remove alcohol from distilled spirits without affecting the sensory properties (14). It consists of passing barrel-strength whiskey through a permeable membrane at high pressure, causing the alcohol to permeate the membrane and concentrating the flavor components in the retentate. [Pg.87]

C. S. Slatter, C. A. Brooks. Development of a simulation model predicting performance of reverse osmosis batch systems. Sep Sci Tech 27 1361, 1992. [Pg.795]


See other pages where Reverse osmosis development is mentioned: [Pg.377]    [Pg.7]    [Pg.5]    [Pg.5]    [Pg.377]    [Pg.7]    [Pg.5]    [Pg.5]    [Pg.287]    [Pg.145]    [Pg.150]    [Pg.153]    [Pg.154]    [Pg.60]    [Pg.63]    [Pg.66]    [Pg.73]    [Pg.75]    [Pg.75]    [Pg.80]    [Pg.144]    [Pg.144]    [Pg.154]    [Pg.156]    [Pg.159]    [Pg.248]    [Pg.363]    [Pg.790]    [Pg.126]    [Pg.127]    [Pg.138]    [Pg.147]    [Pg.354]    [Pg.367]    [Pg.369]    [Pg.180]   
See also in sourсe #XX -- [ Pg.212 ]




SEARCH



Osmosis

Osmosis reversed

Reverse osmosis

© 2024 chempedia.info