Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electro-dialysis

The state of Mo at low concentration in aqueous solution has been studied by dialysis, electro migration, and centrifugation. At pH 2.5— 5 the predominant species is HMoO faq) but at lower pH MoO faq) predominates. The... [Pg.158]

Laboratory methods for isolating lignosulfonates iaclude dialysis (56,57), electro dialysis (58), ioa exclusioa (58,59), precipitatioa ia alcohol (60,61), and extraction with amines (62—64). They can also be isolated by precipitation with long-chain substituted quartemary ammonium salts (65—67). [Pg.144]

The seminal discovery that transformed membrane separation from a laboratory to an industrial process was the development, in the early 1960s, of the Loeb-Sourirajan process for making defect-free, high flux, asymmetric reverse osmosis membranes (5). These membranes consist of an ultrathin, selective surface film on a microporous support, which provides the mechanical strength. The flux of the first Loeb-Sourirajan reverse osmosis membrane was 10 times higher than that of any membrane then avaUable and made reverse osmosis practical. The work of Loeb and Sourirajan, and the timely infusion of large sums of research doUars from the U.S. Department of Interior, Office of Saline Water (OSW), resulted in the commercialization of reverse osmosis (qv) and was a primary factor in the development of ultrafiltration (qv) and microfiltration. The development of electro dialysis was also aided by OSW funding. [Pg.60]

Fig. 35. Schematic diagram of a plate-and-frame electro dialysis stack. Alternating cation- and anion-permeable membranes are arranged in a stack of up to... Fig. 35. Schematic diagram of a plate-and-frame electro dialysis stack. Alternating cation- and anion-permeable membranes are arranged in a stack of up to...
Electro dialysis is used widely to desalinate brackish water, but this is by no means its only significant appHcation. In Japan, which has no readily available natural salt brines, electro dialysis is used to concentrate salt from seawater. The process is also used in the food industry to deionize cheese whey, and in a number of poUution-control appHcations. [Pg.82]

Many electroless coppers also have extended process Hves. Bailout, the process solution that is removed and periodically replaced by Hquid replenishment solution, must still be treated. Better waste treatment processes mean that removal of the copper from electroless copper complexes is easier. Methods have been developed to eliminate formaldehyde in wastewater, using hydrogen peroxide (qv) or other chemicals, or by electrochemical methods. Ion exchange (qv) and electro dialysis methods are available for bath life extension and waste minimi2ation of electroless nickel plating baths (see... [Pg.134]

Desalination. Desalination of seawater and brackish water has been and, as of the mid-1990s, is the primary use of RO. Driven by a need for potable water in areas of the world where there is a shortage, this industry has developed. Desalination involves the reduction of the total dissolved soHds (IDS) concentration to less than 200 mg/L. RO offers several advantages over other possible desalination processes such as distillation (qv), evaporation (qv), and electro dialysis. The primary advantage of RO over the traditionally used method of distillation is the energy savings that is afforded by the lack of a phase change in RO. [Pg.154]

Electrodialysis. Electro dialytic membrane process technology is used extensively in Japan to produce granulated—evaporated salt. Filtered seawater is concentrated by membrane electro dialysis and evaporated in multiple-effect evaporators. Seawater can be concentrated to a product brine concentration of 200 g/L at a power consumption of 150 kWh/1 of NaCl (8). Improvements in membrane technology have reduced the power consumption and energy costs so that a high value-added product such as table salt can be produced economically by electro dialysis. However, industrial-grade salt produced in this manner caimot compete economically with the large quantities of low cost solar salt imported into Japan from Austraha and Mexico. [Pg.183]

Membrane Filtration. Membrane filtration describes a number of weU-known processes including reverse osmosis, ultrafiltration, nanofiltration, microfiltration, and electro dialysis. The basic principle behind this technology is the use of a driving force (electricity or pressure) to filter... [Pg.162]

The individual membrane filtration processes are defined chiefly by pore size although there is some overlap. The smallest membrane pore size is used in reverse osmosis (0.0005—0.002 microns), followed by nanofiltration (0.001—0.01 microns), ultrafHtration (0.002—0.1 microns), and microfiltration (0.1—1.0 microns). Electro dialysis uses electric current to transport ionic species across a membrane. Micro- and ultrafHtration rely on pore size for material separation, reverse osmosis on pore size and diffusion, and electro dialysis on diffusion. Separation efficiency does not reach 100% for any of these membrane processes. For example, when used to desalinate—soften water for industrial processes, the concentrated salt stream (reject) from reverse osmosis can be 20% of the total flow. These concentrated, yet stiH dilute streams, may require additional treatment or special disposal methods. [Pg.163]

Electrodialysis. In electro dialysis (ED), the saline solution is placed between two membranes, one permeable to cations only and the other to anions only. A direct electrical current is passed across this system by means of two electrodes, causiag the cations ia the saline solution to move toward the cathode, and the anions to the anode. As shown ia Figure 15, the anions can only leave one compartment ia their travel to the anode, because a membrane separating them from the anode is permeable to them. Cations are both excluded from one compartment and concentrated ia the compartment toward the cathode. This reduces the salt concentration ia some compartments, and iacreases it ia others. Tens to hundreds of such compartments are stacked together ia practical ED plants, lea ding to the creation of alternating compartments of fresh and salt-concentrated water. ED is a continuous-flow process, where saline feed is continuously fed iato all compartments and the product water and concentrated brine flow out of alternate compartments. [Pg.251]

Fig. 15. Ion movements in the electro dialysis process. Courtesy U.S. Agency for International Development, (a) Many of the substances which make up the total dissolved soHds in brackish water are strong electrolytes. When dissolved in water, they ionize ie, the compounds dissociate into ions which carry an electric charge. Typical of the ions in brackish water are Cl ,, HCO3, , and. These ions tend to attract the dipolar water molecules... Fig. 15. Ion movements in the electro dialysis process. Courtesy U.S. Agency for International Development, (a) Many of the substances which make up the total dissolved soHds in brackish water are strong electrolytes. When dissolved in water, they ionize ie, the compounds dissociate into ions which carry an electric charge. Typical of the ions in brackish water are Cl ,, HCO3, , and. These ions tend to attract the dipolar water molecules...
Since membrane fording could quickly render the system inefficient, very careful and thorough feedwater pretreatment similar to that described in the section on RO, is required. Some pretreatment needs, and operational problems of scaling are diminished in the electro dialysis reversal (EDR) process, in which the electric current flow direction is periodically (eg, 3—4 times/h) reversed, with simultaneous switching of the water-flow connections. This also reverses the salt concentration buildup at the membrane and electrode surfaces, and prevents concentrations that cause the precipitation of salts and scale deposition. A schematic and photograph of a typical ED plant ate shown in Eigure 16. [Pg.252]

Fig. 16. Schematic (a) and basic components (b) of an electro dialysis unit. Fig. 16. Schematic (a) and basic components (b) of an electro dialysis unit.
The voltage used for electro dialysis is about 1 V per membrane pair, and the current flux is of the order of 100 A/m of membrane surface. The total power requirement increases with the feedwater salt concentration, amounting to about 10 MW per m product water per 1000 ppm reduction in salinity. About half this power is required for separation and half for pumping. Many plant flow arrangements exist, and their description can be found, along with other details about the process, in References 68 and 69. Many ED plants, as large as 15,000 vsf jd, are in operation, reducing brackish water concentration typically by a factor of 3—4. [Pg.253]

Common membrane processes include ultrafiltration (UF), reverse osmosis (RO), electro dialysis (ED), and electro dialysis reversal (EDR). These processes (with the exception of UF) remove most ions RO and UF systems also provide efficient removal of nonionized organics and particulates. Because UF membrane porosity is too large for ion rejection, the UF process is used to remove contaminants, such as oil and grease, and suspended soHds. [Pg.261]

Electrodialysis. Electro dialysis processes transfer ions of dissolved salts across membranes, leaving purified water behind. Ion movement is induced by direct current electrical fields. A negative electrode (cathode) attracts cations, and a positive electrode (anode) attracts anions. Systems are compartmentalized in stacks by alternating cation and anion transfer membranes. Alternating compartments carry concentrated brine and purified permeate. Typically, 40—60% of dissolved ions are removed or rejected. Further improvement in water quaUty is obtained by staging (operation of stacks in series). ED processes do not remove particulate contaminants or weakly ionized contaminants, such as siUca. [Pg.262]

Electrodialysis Reversal. Electro dialysis reversal processes operate on the same principles as ED however, EDR operation reverses system polarity (typically three to four times per hour). This reversal stops the buildup of concentrated solutions on the membrane and thereby reduces the accumulation of inorganic and organic deposition on the membrane surface. EDR systems are similar to ED systems, designed with adequate chamber area to collect both product water and brine. EDR produces water of the same purity as ED. [Pg.262]

Electrodialysis. In reverse osmosis pressure achieves the mass transfer. In electro dialysis (qv), dc is appHed to a series of alternating cationic and anionic membranes. Anions pass through the anion-permeable membranes but are prevented from migrating by the cationic permeable membranes. Only ionic species are separated by this method, whereas reverse osmosis can deal with nonionic species. The advantages and disadvantages of reverse osmosis are shared by electro dialysis. [Pg.294]

Preparation of aqueous HOCl substantially free of CU from either aqueous CI2 or HOCl—salt solutions has been accompHshed by electro dialysis (qv) using semipermeable membranes (130). This method has limited potential because of the unavailabihty of stable anionic membranes. [Pg.468]

M. Paleologou, R. M. Berry, and B. I. Fleming, "Bipolar Membrane Electro dialysis A New Solution to the Problems of Chemical Imbalance iu Kraft Mills," 78th Finnual Meeting, Technical Section, Canadian Tulp and Taper Association, Preprints A,Jan. 28—29, 1992, pp. KM—KSl. [Pg.491]

Reverse Osmosis Membrane Cleaning. Citric acid solutions are used to remove iron, calcium, and other cations that foul ceUulose acetate and other membranes in reverse osmosis and electro dialysis systems. Citric acid solutions can solubilize and remove these cations without damaging the membranes (94—96). [Pg.185]

Some examples of electrochemical waste treatment are given in Table 8 (122,123,125—132). Other electrochemical processes such as electro dialysis (qv), electrofiotation, and electrodecantation are also used in waste treatment. [Pg.81]


See other pages where Electro-dialysis is mentioned: [Pg.778]    [Pg.537]    [Pg.490]    [Pg.159]    [Pg.778]    [Pg.537]    [Pg.490]    [Pg.159]    [Pg.165]    [Pg.514]    [Pg.60]    [Pg.61]    [Pg.73]    [Pg.75]    [Pg.75]    [Pg.81]    [Pg.82]    [Pg.82]    [Pg.140]    [Pg.67]    [Pg.490]    [Pg.539]    [Pg.295]    [Pg.163]    [Pg.252]    [Pg.292]    [Pg.483]    [Pg.494]    [Pg.393]    [Pg.38]    [Pg.87]    [Pg.154]   
See also in sourсe #XX -- [ Pg.3 , Pg.1453 ]

See also in sourсe #XX -- [ Pg.2 , Pg.832 ]




SEARCH



Dialysis

Reverse electro-dialysis

© 2024 chempedia.info