Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Refining catalytic cracking

Following certain refining processes like catalytic cracking, sizeable amounts of nitrogen can appear in light cuts and cause quality problems such as instability in storage, brown color, and gums. [Pg.12]

H2S is found with the reservoir gas and dissolved in the crude (< 50 ppm by weight), but it is formed during refining operations such as catalytic cracking, hydrodesulfurization, and thermal cracking or by thermal decomposition of sulfur[Pg.322]

Catalytic cracking is a key refining process along with catalytic reforming and alkylation for the production of gasoline. Operating at low pressure and in the gas phase, it uses the catalyst as a solid heat transfer medium. The reaction temperature is 500-540°C and residence time is on the order of one second. [Pg.384]

Catalytic Processes. A second group of refining operations which contribute to gas production are the catalytic cracking processes, such as fluid-bed catalytic cracking, and other variants, in which heavy gas oils are converted into gas, naphthas, fuel oil, and coke (5). [Pg.74]

Refinery Production. Refinery propylene is formed as a by-product of fluid catalytic cracking of gas oils and, to a far lesser extent, of thermal processes, eg, coking. The total amount of propylene produced depends on the mix of these processes and the specific refinery product slate. For example, in the United States, refiners have maximized gasoline production. This results in a higher level of propylene production than in Europe, where proportionally more heating oil is produced. [Pg.126]

The principal sources of feedstocks in the United States are the decant oils from petroleum refining operations. These are clarified heavy distillates from the catalytic cracking of gas oils. About 95% of U.S. feedstock use is decant oil. Another source of feedstock is ethylene process tars obtained as the heavy byproducts from the production of ethylene by steam cracking of alkanes, naphthas, and gas oils. There is a wide use of these feedstocks in European production. European and Asian operations also use significant quantities of coal tars, creosote oils, and anthracene oils, the distillates from the high temperature coking of coal. European feedstock sources are 50% decant oils and 50% ethylene tars and creosote oils. [Pg.544]

Catalytic Pyrolysis. This should not be confused with fluid catalytic cracking, which is used in petroleum refining (see Catalysts, regeneration). Catalytic pyrolysis is aimed at producing primarily ethylene. There are many patents and research articles covering the last 20 years (84—89). Catalytic research until 1988 has been summarized (86). Almost all catalysts produce higher amounts of CO and CO2 than normally obtained with conventional pyrolysis. This indicates that the water gas reaction is also very active with these catalysts, and usually this leads to some deterioration of the olefin yield. Significant amounts of coke have been found in these catalysts, and thus there is a further reduction in olefin yield with on-stream time. Most of these catalysts are based on low surface area alumina catalysts (86). A notable exception is the catalyst developed in the former USSR (89). This catalyst primarily contains vanadium as the active material on pumice (89), and is claimed to produce low levels of carbon oxides. [Pg.443]

Ethylene as a By-Product. The contribution to world ethylene production is small, but not zero. In petroleum refining fluid catalytic cracking (FCC) units, small amounts of ethylene are produced but generally not recovered, except in a few locations where large FCC units are adjacent to petrochemical faciUties. [Pg.444]

Additional gasoline and diesel fuel can be produced through further refining, such as hydrocracking or catalytic cracking of the wax product. [Pg.2377]

An old variation of the conversion type is a catalytic combination unit. Development of this scheme was necessitated by the rising cost of refinery construction after World War II and by the great demand for capital for postwar expansion. The scheme reduced the investment and operating costs for refining equipment. The basic feature of the combination unit lies in the integration of the fractionation facilities of the reduced crude distillation and catalytic cracking sections. [Pg.220]

At this time, forward-looking companies understood that the ability of a refiner to control the highest octane fuels could corner critical and specialized niche automotive and aviation fuel markets. Refiners looked on catalytic cracking as a way to more finely tune their products for these market segments. [Pg.990]

Since 1945, the fluid catalytic cracking process has rapidly overtaken fuel production and has become the central technology in the U.S. petrochemicals industi y. With fluid cracking, the scale of petrochemical operations grew eiinriiiotisly. For the first time, refiners could process virtually any volume of oil rapidly and efficiently. [Pg.994]

Solvent extraction may also be used to reduce asphaltenes and metals from heavy fractions and residues before using them in catalytic cracking. The organic solvent separates the resids into demetallized oil with lower metal and asphaltene content than the feed, and asphalt with high metal content. Figure 3-2 shows the IFP deasphalting process and Table 3-2 shows the analysis of feed before and after solvent treatment. Solvent extraction is used extensively in the petroleum refining industry. Each process uses its selective solvent, but, the basic principle is the same as above. [Pg.53]

Occelli, M. L., (ed.) Fluid Catalytic Cracking, Role in Modem Refining, ACS Symposium Series, American Chemical Society, Washington DC, 1988, pp. 1-16. [Pg.109]

Fluid catalytic cracking (FCC) continues to play a key role in an integrated refinery as the primary conversion process. For many refiners, the cat cracker is the key to profitability in that the successful operation of the unit determines whether or not the refiner can remain competitive in today s market. [Pg.1]

McAfee of Gulf Refining Co. discovered that a Friedel-Crafts aluminum chloride catalyst could catalytically crack heavy oil. [Pg.4]

Before the advent of the catalytic cracking process, thermal cracking was the primary process available to convert low-value feedstocks into lighter products. Refiners still use thermal processes, such as delayed coking and visibreaking, for cracking of residual hydrocarbons. [Pg.126]

PET, see Polyethylene terephthalate Petit, Rowland, 524 Petroleum, catalytic cracking of, 100 composition of, 99-100 gasoline from. 99-100 history of, 99 refining of, 99-100 Pharmaceuticals, approval procedure for, 165 origin of, 164 Phenol(s), 599... [Pg.1311]

Carbon Monoxide Boilers Carbon monoxide boilers are used to recover waste heat generated from oil refining fluid catalytic cracking (FCC) processes. The FCC process produces copious volumes of by-product gas containing 5 to 8% carbon monoxide (CO), which has a heat content of about 150 Btu/lb. A 10,000 barrel (bbl) per day FCC unit produces 60,000 to 150,000 lb/hr of CO. [Pg.57]

Some invaluable isolated actions were taken from time to time in the last twenty to twenty five years that prevented air quality from declining at an even faster rate. For example, energy demand was met (electricity and refined oil products) by expanding capacity of plants located outside of the MCMA a metro was built the vehicular traffic system was reordered and new hydrotreating, reforming and catalytic cracking units reduced lead and sulfur in refined products. [Pg.161]

L. Rheaume and R. E. Ritter, in Fluid Catalytic Cracking - Role in Modem Refining,... [Pg.142]

Any chemical derived from petroleum, the main refining processes being fractional distillation, catalytic cracking and platforming (reforming the constituents with the aid of a platinum catalyst). Since sulphur may be recovered from petroleum refining and since SBR, furnace black and processing oils are all petrochemicals it is... [Pg.46]


See other pages where Refining catalytic cracking is mentioned: [Pg.739]    [Pg.739]    [Pg.178]    [Pg.376]    [Pg.408]    [Pg.947]    [Pg.175]    [Pg.364]    [Pg.403]    [Pg.353]    [Pg.164]    [Pg.6]    [Pg.365]    [Pg.85]    [Pg.219]    [Pg.551]    [Pg.632]    [Pg.707]    [Pg.78]    [Pg.369]    [Pg.1107]    [Pg.352]    [Pg.361]    [Pg.142]    [Pg.3]    [Pg.383]    [Pg.54]   
See also in sourсe #XX -- [ Pg.990 , Pg.994 ]




SEARCH



Catalytic refining

FLUID CATALYTIC CRACKING: ROLE IN MODERN REFINING

Petroleum refineries/refining catalytic cracking

Petroleum, catalytic cracking refining

Refining Houdry catalytic cracking

Refining fluid catalytic cracking

© 2024 chempedia.info