Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reduced nicotinamide adenine

Insects poisoned with rotenone exhibit a steady decline ia oxygen consumption and the iasecticide has been shown to have a specific action ia interfering with the electron transport iavolved ia the oxidation of reduced nicotinamide adenine dinucleotide (NADH) to nicotinamide adenine dinucleotide (NAD) by cytochrome b. Poisoning, therefore, inhibits the mitochondrial oxidation of Krebs-cycle iatermediates which is catalysed by NAD. [Pg.270]

Fig. 9. Glucuionic acid pathway. NAD = nicotinamide-adenine dinucleotide NADH = reduced nicotinamide—adenine dinucleotide ... Fig. 9. Glucuionic acid pathway. NAD = nicotinamide-adenine dinucleotide NADH = reduced nicotinamide—adenine dinucleotide ...
NADP = nicotinamide-adenine dinucleotide phosphate NADPH = reduced nicotinamide—adenine dinucleotide phosphate NDP = nucleoside... [Pg.19]

In living organisms, aldehyde and ketone reductions are carried out by either of the coenzymes NADH (reduced nicotinamide adenine dinucleotide) or NADPH (reduced nicotinamide adenine dinucleotide phosphate). Although... [Pg.610]

Reduced nicotinamide adenine dinucleotide, NADH, acts as the biological reducing agent. [Pg.932]

All NOS isoforms utilize L-arginine as the substrate, and molecular oxygen and reduced nicotinamide adenine dinucleotide phosphate (NADPH) as cosubstrates. Flavin adenine dinucleotide (FMN), flavin mononucleotide (FAD), and (6R)-5,6,7,8-tetrahydro-L-biopterin (BH4) are cofactors of the enzyme. All NOS isoforms contain heme and bind calmodulin. In nNOS and eNOS,... [Pg.862]

Polypyrrole shows catalytic activity for the oxidation of ascorbic acid,221,222 catechols,221 and the quinone-hydroquinone couple 223 Polyaniline is active for the quinone-hydroquinone and Fe3+/Fe2+ couples,224,225 oxidation of hydrazine226 and formic acid,227 and reduction of nitric acid228 Poly(p-phenylene) is active for the oxidation of reduced nicotinamide adenine dinucleotide (NADH), catechol, ascorbic acid, acetaminophen, and p-aminophenol.229 Poly(3-methylthiophene) catalyzes the electrochemistry of a large number of neurotransmitters.230... [Pg.588]

Ethanol is oxidized by alcohol dehydrogenase (in the presence of nicotinamide adenine dinucleotide [NAD]) or the microsomal ethanol oxidizing system (MEOS) (in the presence of reduced nicotinamide adenine dinucleotide phosphate [NADPH]). Acetaldehyde, the first product in ethanol oxidation, is metabolized to acetic acid by aldehyde dehydrogenase in the presence of NAD. Acetic acid is broken down through the citric acid cycle to carbon dioxide (CO2) and water (H2O). Impairment of the metabolism of acetaldehyde to acetic acid is the major mechanism of action of disulfiram for the treatment of alcoholism. [Pg.6]

Reduced nicotinamide-adenine dinucleotide (NADH) plays a vital role in the reduction of oxygen in the respiratory chain [139]. The biological activity of NADH and oxidized nicotinamideadenine dinucleotide (NAD ) is based on the ability of the nicotinamide group to undergo reversible oxidation-reduction reactions, where a hydride equivalent transfers between a pyridine nucleus in the coenzymes and a substrate (Scheme 29a). The prototype of the reaction is formulated by a simple process where a hydride equivalent transfers from an allylic position to an unsaturated bond (Scheme 29b). No bonds form between the n bonds where electrons delocalize or where the frontier orbitals localize. The simplified formula can be compared with the ene reaction of propene (Scheme 29c), where a bond forms between the n bonds. [Pg.50]

The samples of l,6-T2-DBpD and l,6-T2-2,3,7,8-Cl4-DBpD are useful in metabolism and mode of action studies. For example, when incubated with rabbit liver microsomes, l,6-T.>-DBpD is extensively metabolized to polar product(s) but only when these preparations are fortified with reduced nicotinamide-adenine dinucleotide phosphate. Under the same conditions l,6-T2-2,3,7,8-Cl4-DBpD is completely resistant to metabolic attack. In some types of studies, a higher specific activity possibly is desirable i.e., >1 Ci/mmole), and this can be achieved, with the methodology already developed, by using larger amounts of tritium gas or working on a larger synthetic scale so that it is not necessary to add unlabeled materials to assist in crystallization steps where a certain minimum amount of compound is necessary. [Pg.13]

Murphy Ml, LM Siegel, H Kamin (1973) Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. II. Identification of a new class of heme prosthetic group an iron-tetrahydroporphyrin (isobacteriochlorin type) with eight carboxylic acid groups. J Biol Chem 248 2801-3814. [Pg.160]

NAAb Natural autoantibody NAb Natural antibody NAC N-acetylcysteine NADH Reduced nicotinamide adenine dinucleotide NADP Nicotinamide adenine diphosphate... [Pg.284]

NADPH Reduced nicotinamide adenine dinucleotide phosphate NAF Neutrophil activating factor l-NAME L-Nitroarginine methyl ester... [Pg.284]

Blaedel WJ, Jenkins RA. 1975. Study of the electrochemical oxidation of reduced nicotinamide adenine dinucleotide. Anal Chem 47 1337-1343. [Pg.630]

Under conditions of copper deficiency, some methanotrophs can express a cytosolic, soluble form of MMO (sMMO) (20-23), the properties of which form the focus of the present review. The sMMO system comprises three separate protein components which have all been purified to homogeneity (24,25). The hydroxylase component, a 251 kD protein, contains two copies each of three subunits in an a 82y2 configuration. The a subunit of the hydroxylase houses the dinuclear iron center (26) responsible for dioxygen activation and for substrate hydroxylation (27). The 38.6 kD reductase contains flavin adenine dinucleotide (FAD) and Fe2S2 cofactors (28), which enable it to relay electrons from reduced nicotinamide adenine dinucleotide (NADH) to the diiron center in the... [Pg.267]

Fisher, J. Ramakrishnan, K. Becvar, J. E. Direct enzyme-catalyzed reduction of anthra-cyclines by reduced nicotinamide adenine dinucleotide. Biochemistry 1983, 22, 1347-1355. [Pg.264]

The most important product of the hexose monophosphate pathway is reduced nicotinamide-adenine dinucleotide phosphate (NADPH). Another important function of this pathway is to provide ribose for nucleic acid synthesis. In the red blood cell, NADPH is a major reducing agent and serves as a cofactor in the reduction of oxidized glutathione, thereby protecting the cell against oxidative attack. In the syndromes associated with dysfunction of the hexose monophosphate pathway and glutathione metabolism and synthesis, oxidative denaturation of hemoglobin is the major contributor to the hemolytic process. [Pg.2]

M8. Manabe, J., Arya, R Sumimoto, H., Yubisui, T., Bellingham, A. J Layton, D. M., and Fuku-maki, Y., Two novel mutations in the reduced nicotinamide adenine dinucleotide (NADH)-cy-tochrome b5 reductase gene of a patient with generalized type, hereditary methemoglobinemia. [Pg.46]

In the Kohn-Sham Hamiltonian, the SVWN exchange-correlation functional was used. Equation 4.12 was applied to calculate the electron density of folate, dihydrofolate, and NADPH (reduced nicotinamide adenine dinucleotide phosphate) bound to the enzyme— dihydrofolate reductase. For each investigated molecule, the electron density was compared with that of the isolated molecule (i.e., with VcKt = 0). A very strong polarizing effect of the enzyme electric field was seen. The largest deformations of the bound molecule s electron density were localized. The calculations for folate and dihydrofolate helped to rationalize the role of some ionizable groups in the catalytic activity of this enzyme. The results are,... [Pg.108]

Baskin, L.S., and Yang, C.S. (1980a) Cross-linking studies of cytochrome P-450 and reduced nicotinamide adenine dinucleotide phosphate-cytochrome P-450 reductase. Biochemistry 19, 2260-2264. [Pg.1045]

C.X. Cai, H.X. Ju, and H.Y Chen, Catalytic oxidation of reduced nicotinamide adenine dinucleotide at a microband gold electrode modified with nickel hexacyanoferrate. Anal. Chim. Acta 310, 145-151 (1995). [Pg.457]

It is helpful to think of the photosynthesis reaction as the sum of an oxidation half reaction and a reduction half reaction as shown in Figure 1. In fact, nature does separate these half reactions, in that the reduction of C02 to carbohydrates occurs in the stroma of the chloroplast, the organelle in the leaf where the photosynthesis reaction occurs, - whereas, the light-driven oxidation half reaction takes place on the thylakoid membranes which make up the grana stacks within the chloroplast. Reduced nicotinamide adenine dinucleotide phosphate (NADPH) carries the reducing power and most of the energy to the stroma to drive the fixation of C02 with the help of some additional energy provided... [Pg.6]

The answers are 34-g, 35-a, 36-d. (Katzung, pp 53—56J There are four major components to the mixed-function oxidase system (1) cytochrome P450, (2) NAD PH, or reduced nicotinamide adenine dinucleotide phosphate, (3) NAD PH—cytochrome P450 reductase, and (4) molecular oxygen. The figure that follows shows the catalytic cycle for the reactions dependent upon cytochrome P450. [Pg.54]

VANONI, M.A., MATTHEWS, R.G., Kinetic isotope effects on the oxidation of reduced nicotinamide adenine dinucleotide phosphate by the flavoprotein methylenetetrahydrofolate reductase, Biochemistry, 1984, 23, 5272-5279. [Pg.28]

Hexachloroethane is metabolized by the mixed function oxidase system by way of a two-step reduction reaction involving cytochrome P-450 and either reduced nicotinamide adenine dinucleotide phosphate (NADPH) or cytochrome b5 as an electron donor. The first step of the reduction reaction results in the formation of the pentachloroethyl free radical. In the second step, tetrachloroethene is formed as the primary metabolite. Two chloride ions are released. Pentachloroethane is a minor metabolic product that is generated from the pentachloroethyl free radical. [Pg.72]

GABA HMG-CoA HMPA HT LDA LHMDS LTMP NADH NBH NBS NCS NIS NK NMP PMB PPA RaNi Red-Al RNA SEM SnAt TBAF TBDMS TBS Tf TFA TFP THF TIPS TMEDA TMG TMP TMS Tol-BINAP TTF y-aminobutyric acid hydroxymethylglutaryl coenzyme A hexamethylphosphoric triamide hydroxytryptamine (serotonin) lithium diisopropylamide lithium hexamethyldisilazane lithium 2,2,6,6-tetramethylpiperidine reduced nicotinamide adenine dinucleotide l,3-dibromo-5,5-dimethylhydantoin A-bromosuccinimide A-chlorosuccinimide A-iodosuccinimide neurokinin 1 -methyl-2-pyrrolidinone para-methoxybenzyl polyphosphoric acid Raney Nickel sodium bis(2-methoxyethoxy)aluminum hydride ribonucleic acid 2-(trimethylsilyl)ethoxymethyl nucleophilic substitution on an aromatic ring tetrabutylammonium fluoride tert-butyldimcthyisilyl fert-butyldimethylsilyl trifluoromethanesulfonyl (triflyl) trifluoroacetic acid tri-o-furylphosphine tetrahydrofuran triisopropylsilyl A, N,N ,N -tetramethy lethylenediamine tetramethyl guanidine tetramethylpiperidine trimethylsilyl 2,2 -bis(di-p-tolylphosphino)-l,r-binaphthyl tetrathiafulvalene... [Pg.419]

Kaplin Al, Snyder SH, Linden DJ. 1996. Reduced nicotinamide adenine dinucleotide-selective stimulation of inositol 1,4,5-trisphosphate receptors mediates hypoxic mobilization of calcium. The Journal of Neuroscience 16(6) 2002-2011. [Pg.255]

Hendrickson CM, Bowden JA. 1976. In vitro inhibition of lactate dehydrogenase by insecticidal polychlorinated hydrocarbons I. Mechanism of inhibition Possible association of reduced nicotinamide adenine dinucleotide with mirex. J Agric Food Chem 24(2) 241-244. [Pg.260]


See other pages where Reduced nicotinamide adenine is mentioned: [Pg.28]    [Pg.40]    [Pg.393]    [Pg.125]    [Pg.270]    [Pg.809]    [Pg.724]    [Pg.1074]    [Pg.862]    [Pg.865]    [Pg.37]    [Pg.229]    [Pg.118]    [Pg.251]    [Pg.2]    [Pg.3]    [Pg.286]    [Pg.457]    [Pg.1163]    [Pg.30]    [Pg.30]    [Pg.231]   


SEARCH



NADH (reduced nicotinamide adenine

NADH, Reduced nicotinamide adenine dinucleotide

NADPH (reduced nicotinamide adenine

Niacin Nicotinamide adenine dinucleotide phosphate, reduced (NADPH

Nicotinamide - adenine dinucleotide phosphate, reduced (NADPH

Nicotinamide adenine

Nicotinamide adenine dinucleotide hydride reduced form cofactor

Nicotinamide adenine dinucleotide phosphate reduced form

Nicotinamide adenine dinucleotide phosphate reduced form, NADPH

Nicotinamide adenine dinucleotide reduced), biological reduction with

Nicotinamide adenine dinucleotide reduced), biological reductions

Nicotinamide adenine dinucleotide, reduced

Nicotinamide adenine dinucleotide, reduced form

Nicotinamide adenine dinucleotide, reduced form NADH)

Nicotinamide adenine diphosphate phosphate reduced

Nicotinamide-adenine nucleotide, reduced (NADH

Nicotinamide-adenine nucleotide, reduced (NADH enzyme

Nicotinamides, reduced

Reduced nicotinamide adenine dinucleotide phosphate

© 2024 chempedia.info