Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radium Estimation

Twenty isotopes are known. Radon-22, from radium, has a half-life of 3.823 days and is an alpha emitter Radon-220, emanating naturally from thorium and called thoron, has a half-life of 55.6 s and is also an alpha emitter. Radon-219 emanates from actinium and is called actinon. It has a half-life of 3.96 s and is also an alpha emitter. It is estimated that every square mile of soil to a depth of 6 inches contains about 1 g of radium, which releases radon in tiny amounts into the atmosphere. Radon is present in some spring waters, such as those at Hot Springs, Arkansas. [Pg.152]

Exposure to low doses of radiation causes no short-term damage but makes the body more susceptible to cancers. In particular, people who have been exposed to increased radiation levels have a much higher incidence of leukemia than the general population has. Marie Curie, the discoverer of radium, eventually died of leukemia brought on by exposure to radiation in the course of her experiments. Medical researchers estimate that about 10% of all cancers are caused by exposure to high-energy radiation. [Pg.1600]

A less common entry mechanism is the outgassing of radon from well water. A well supplied by groundwater that is in contact with a radium-bearing formation can transport the dissolved radon into the home. It is estimated that the health risks associated with breathing radon gas released from the water are 10 times higher than the risks associated with ingesting water containing radon.9... [Pg.1257]

Factors influencing the production and migration of radon in soils have been examined, and various sources of geographic data have been discussed. Two significant soil characteristics include air permeability and, less importantly, radium concentration. While there are, at present, few opportunities to compare the larger-scale data with on-site field measurements, those comparisons that have been made for both surface radium concentrations and air permeability of soils show a reasonable correspondence. Further comparisons between the aerial radiometric data and surface measurements are needed. Additional work and experience with SCS information on soils will improve the confidence in the permeability estimates, as will comparisons between the estimated permeabilities and actual air permeability measurements performed in the field. [Pg.33]

We can estimate densities of solids from the information in Figure 10-1. Radium has Z = 88 and an approximate atomic volume of 40 cm3 /mol. Then we use the molar mass of radium to determine its density ... [Pg.191]

The short-lived radium isotopes have been used in coastal and nearshore studies. Moore (2000) used 223Ra (half-life of 11 days) and 224Ra (half-life of 3.7 days) to estimate rates of cross-shelf exchange in the South Atlantic Bight. Charette et al. (2001) used this pair to estimate the age of... [Pg.53]

Radon is another example of a very curious and toxic compound that many of us regularly inhale, hopefully in small amounts. For those regularly exposed to radon, there is an increased risk for lung cancer and, for those that smoke, radon exposure results in a three-fold increase in the incidence of lung cancer. In the United States it is estimated that indoor radon exposure causes between 7000 and 30,000 lung cancer-related deaths each year, second only to tobacco smoking. Radon-222 is a colorless and odorless radioactive gas that results from the decay of radium-226, which is widely distributed in the earth s crust. Radon decays with a half-life of 3.8 days into solid particles of polonium. It is actually the breakdown of... [Pg.204]

Keane AT, Lucas HF, Markun F, et al. 1986. The estimation and potential radiobiological significance of the intake of radium-228 by early radium dial workers in Illinois. Health Phys 51 313-328. [Pg.142]

The BEIR III risk estimates formulated under several dose-response models demonstrate that the choice of the model can affect the estimated excess more than can the choice of the data to which the model is applied. BEIR III estimates of lifetime excess cancer deaths among a million males exposed to 0.1 Gy (10 rad) of low-LET radiation, derived with the three dose-response functions employed in that report, vary by a factor of 15, as shown in Ikble 6.1 (NAS/NRC, 1980). In animal experiments with high-LET radiation, the most appropriate dose-response function for carcinogenesis is often found to be linear at least in the low to intermediate dose range (e.g., Ullrich and Storer, 1978), but the data on bone sarcomas among radium dial workers are not well fitted by either a linear or a quadratic form. A good fit for these data is obtained only with a quadratic to which a negative exponential term has been added (Rowland et al., 1978). [Pg.53]

Case Radium-226 and Radium-228. The concept of risk projections from experimental dose-response curves has been highly developed in the case of estimating risks to the population from low doses of radiation. Such methods were later extended to estimate risks from other carcinogens in drinking water and other media. Radioactivity can contribute risks from teratogenic, genetic, and somatic (carcinogenic) effects. [Pg.689]

The isotopes of thorium include mass numbers 223-234. 232Th has a half-life of 1.39 x 1010 years, See also Radioactivity. It emits an alpha-particle and forms meso-thorium 1 (radium-228), which is also radioactive, having a half-life of 6.7 years, emitting a beta-particle. Since 2 2Th captures slow neutions to form, by a series of nuclear reactions, >>U which is fissionable, thorium can be used as a fuel for nuclear reactors of the breeder type. Thorium occurs in earth minerals, an average content estimated at about 12 ppm. Findings of hc Apollo 11 space flight indicated that thorium concentrations in some lunar rocks are about the same as the concentrations in terrestrial basalts. [Pg.1615]

Estimated Levels of Average Human Exposure to Radium by Nonoccupational Populations... [Pg.9]

There is no information on the lethal effects of radium due to acute oral exposure. Many deaths, especially from bone cancer, have occurred in humans following long-term oral exposure to radium-226 and radium-228. As described by Rowland et al. (1978), female radium dial painters in the 1920s who "tipped" their paint brushes with their lips or tongues ingested radium in the process. The dial paint usually contained long-lived radium-226 and shorter-lived radium-228. A toxicity ratio has been developed for these isotopes it has been estimated that radium-228 is about 2.5 times as effective,... [Pg.23]

These bone sarcomas and head carcinomas have been seen in many radium dial painters and have appeared from 5 to more than 50 years after first exposure to radium. Of those dial painters for whom radium intakes have been estimated (a total of 1,907), 41 have developed bone sarcomas,... [Pg.25]

Based on data on these dial painters from the 1985 listing of radium cases studied at the Argonne National Laboratory (Gustafson and Stehney 1985) Rundo et al. (1986) have estimated that the lowest total intake level of radium associated with a malignancy was 60 pCi (2,222 kBq) or 1.03 p Ci/kg (38 kBq/kg) based on an estimated 58 kg body weight for a woman. These estimates are based on current radium body content modified by the Norris retention function (to account for the decrease in body radium content with time since exposure) and an estimate of radium-228 from measurements of radium-226 and the known or presumed ratios of these isotopes in the materials to which these persons were exposed (Rundo et al. 1986). [Pg.25]

Osteogenic sarcomas were reported in 3 out of 5 rats administered radium for 20 days by dropper (Evans et al. 1944). Each animal was given a different estimated total dose ranging from 10 to 70 p Ci. The lowest dose to clearly induce a malignancy was 22 pCi (approximately 73 pCi/kg or 2,703 kBq/kg). [Pg.25]

Estimation of this radiation dose is sometimes accomplished by modeling the sequence of events involved in the acquisition, deposition, clearance, and decay of radium within the body. While based on the current understanding of experimental data on radium toxicokinetics, different models make different assumptions about these processes, thereby resulting in different estimates of dose and risk. These models are described in numerous reports including BEIR IV (1988), ICRP (1979), and Raabe et al. (1983). In this section, the toxicokinetics of radium are described based on the available experimental data rather than on descriptions derived from models. [Pg.30]


See other pages where Radium Estimation is mentioned: [Pg.50]    [Pg.51]    [Pg.60]    [Pg.101]    [Pg.102]    [Pg.107]    [Pg.351]    [Pg.352]    [Pg.357]    [Pg.593]    [Pg.22]    [Pg.23]    [Pg.514]    [Pg.111]    [Pg.72]    [Pg.467]    [Pg.144]    [Pg.59]    [Pg.94]    [Pg.49]    [Pg.59]    [Pg.160]    [Pg.599]    [Pg.257]    [Pg.294]    [Pg.691]    [Pg.1406]    [Pg.34]    [Pg.24]    [Pg.25]    [Pg.30]    [Pg.32]    [Pg.36]   
See also in sourсe #XX -- [ Pg.78 ]




SEARCH



Radium

© 2024 chempedia.info