Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quantitative analysis sample preparation

G.29 R. Jenkins and J. L. DeVries. Practical X-Ray Spectrometry, 2nd ed. (New York Springer-Verlag, 1969). Experimental and data-handling aspects. Quantitative analysis, sample preparation, and trace analysis. Energy-dispersive methods not included. [Pg.532]

Quantitative Analysis sample preparation write-up required... [Pg.475]

The sample preparation discussed will not include the addition of standards for quantitative analysis as this subject will be dealt with in the chapter on quantitative analysis. Samples can arrive for LC analyses as solids, liquids or a mixture of both and, therefore, the three possibilities must be considered separately. Furthermore, the... [Pg.210]

In the application of atomic emission spectroscopy for quantitative analysis, samples must be prepared in liquid form of a suitable solvent unless it is already presented in that form. The exceptions are solids where samples can be analysed as received using rapid heating electro-thermal excitation sources, such as graphite furnace heating or laser ablation methods. Aqueous samples, e.g. domestic water, boiler water, natural spring, wines, beers and urines, can be analysed for toxic and non-toxic metals as received with... [Pg.63]

Typical sample preparation steps include homogenization, extraction (liquid—liquid extraction, LLE, or instrumental based techniques), cleanup (usually by solid-phase extraction, SPE), and concentration of extracts. Sometimes, derivatization has to be incorporated into sample preparation (e.g., release of bormd residues or deconjugation). For quantitative analysis, the preparation of adequate calibration standards also may be a key aspect in some cases, matrix-matched standards or the standard additions method may be necessary, as well as the use of suitable internal standards (e.g., isotopically labeled compormds) [19]. Matrix-matched calibration is now preferred, as it is the best compromise in terms of speed and cost of analysis, taking into consideration the features of the MS analyzers. [Pg.460]

Standardization—External standards, standard additions, and internal standards are a common feature of many quantitative analyses. Suggested experiments using these standardization methods are found in later chapters. A good project experiment for introducing external standardization, standard additions, and the importance of the sample s matrix is to explore the effect of pH on the quantitative analysis of an acid-base indicator. Using bromothymol blue as an example, external standards can be prepared in a pH 9 buffer and used to analyze samples buffered to different pHs in the range of 6-10. Results can be compared with those obtained using a standard addition. [Pg.130]

A quantitative analysis for NH3 in several household cleaning products is carried out by titrating with a standard solution of HGl. The titration s progress is followed thermometrically by monitoring the temperature of the titration mixture as a function of the volume of added titrant. Household cleaning products may contain other basic components, such as sodium citrate or sodium carbonate, that will also be titrated by HGl. By comparing titration curves for prepared samples of NH3 to titration curves for the samples, it is possible to determine that portion of the thermometric titration curve due to the neutralization of NH3. [Pg.358]

Samples of analyte are dissolved in a suitable solvent and placed on the IR card. After the solvent evaporates, the sample s spectrum is obtained. Because the thickness of the PE or PTEE film is not uniform, the primary use for IR cards has been for qualitative analysis. Zhao and Malinowski showed how a quantitative analysis for polystyrene could be performed by adding an internal standard of KSCN to the sample. Polystyrene was monitored at 1494 cm- and KSCN at 2064 cm-. Standard solutions were prepared by placing weighed portions of polystyrene in a 10-mL volumetric flask and diluting to volume with a solution of 10 g/L KSCN in... [Pg.453]

Precision The precision of a gas chromatographic analysis includes contributions from sampling, sample preparation, and the instrument. The relative standard deviation due to the gas chromatographic portion of the analysis is typically 1-5%, although it can be significantly higher. The principal limitations to precision are detector noise and the reproducibility of injection volumes. In quantitative work, the use of an internal standard compensates for any variability in injection volumes. [Pg.577]

For the higher alkoxy groups, standard carbon and hydrogen analysis may be used, although careful sample preparation is required because of the ease of hydrolysis. Quantitative vapor-phase chromatography of alcohol Hberated during hydrolysis may also be used, but care must be taken in this case to ensure that hydrolysis is complete before the estimation is carried out. [Pg.28]

Analytical Techniques. Sorbic acid and potassium sorbate are assayed titrimetricaHy (51). The quantitative analysis of sorbic acid in food or beverages, which may require solvent extraction or steam distillation (52,53), employs various techniques. The two classical methods are both spectrophotometric (54—56). In the ultraviolet method, the prepared sample is acidified and the sorbic acid is measured at 250 260 nm. In the colorimetric method, the sorbic acid in the prepared sample is oxidized and then reacts with thiobarbituric acid the complex is measured at - 530 nm. Chromatographic techniques are also used for the analysis of sorbic acid. High pressure Hquid chromatography with ultraviolet detection is used to separate and quantify sorbic acid from other ultraviolet-absorbing species (57—59). Sorbic acid in food extracts is deterrnined by gas chromatography with flame ionization detection (60—62). [Pg.284]

It is crucial in quantitative GC to obtain a good separation of the components of interest. Although this is not critical when a mass spectrometer is used as the detector (because ions for identification can be mass selected), it is nevertheless good practice. If the GC effluent is split between the mass spectrometer and FID detector, either detector can be used for quantitation. Because the response for any individual compound will differ, it is necessary to obtain relative response factors for those compounds for which quantitation is needed. Care should be taken to prevent contamination of the sample with the reference standards. This is a major source of error in trace quantitative analysis. To prevent such contamination, a method blank should be run, following all steps in the method of preparation of a sample except the addition of the sample. To ensure that there is no contamination or carryover in the GC column or the ion source, the method blank should be run prior to each sample. [Pg.215]

The accuracy and precision of carotenoid quantification by HPLC depend on the standard purity and measurement of the peak areas thus quantification of overlapping peaks can cause high variation of peak areas. In addition, preparation and dilution of standard and sample solutions are among the main causes of error in quantitative analysis. For example, the absorbance levels at of lutein in concentrations up to 10 mM have a linear relationship between concentration and absorbance in hexane and MeOH on the other hand, the absorbance of P-carotene in hexane increased linearly with increasing concentration, whereas in MeOH, its absorbance increased linearly up to 5 mM but non-linearly at increasingly higher concentrations. In other words, when a stock solution of carotenoids is prepared, care should be taken to ensure that the compounds are fuUy soluble at the desired concentrations in a particular solvent. [Pg.471]

The main uses of TLC include (1) qualitative analysis (the identification of the presence or absence of a particular substance in the mixture), (2) quantitative analysis (precise and accurate determination of a particular substance in a sample mixture), and (3) preparative analysis (purification and isolation of a particular substance for subsequent use). All these analytical and preparative applications of TLC require the common procedures of sample apphcation, chromatographic separation, and... [Pg.348]

The determination of the relationship between detector response and the sample concentration is termed the calibration of the method. There are two types of methods in use for the quantitative analysis of a sample, i.e., the external standard and the internal standard method. An external standard method is a direct comparison of the detector response of a pure compound (standard) to a sample.2 The calibration of the method is performed by preparing standards of varying concentration and analyzing them by a developed method. Method 1 (below) was developed for toluene, and standards of varying concentration were prepared and analyzed. The results obtained are summarized in Table 2 see Figure 3. [Pg.156]

Analytical techniques for the quantitative determination of additives in polymers generally fall into two classes indirect (or destructive) and direct (or nondestructive). Destructive methods require an irreversible alteration to the sample so that the additive can be removed from the plastic material for subsequent detention. This chapter separates the additive wheat from the polymer chaff , and deals with sample preparation techniques for indirect analysis. [Pg.52]


See other pages where Quantitative analysis sample preparation is mentioned: [Pg.522]    [Pg.12]    [Pg.414]    [Pg.513]    [Pg.513]    [Pg.118]    [Pg.614]    [Pg.130]    [Pg.341]    [Pg.362]    [Pg.443]    [Pg.49]    [Pg.198]    [Pg.268]    [Pg.141]    [Pg.90]    [Pg.217]    [Pg.290]    [Pg.306]    [Pg.407]    [Pg.236]    [Pg.177]    [Pg.634]    [Pg.497]    [Pg.352]    [Pg.80]    [Pg.697]    [Pg.818]    [Pg.904]    [Pg.1152]    [Pg.382]    [Pg.961]    [Pg.92]    [Pg.299]    [Pg.409]   
See also in sourсe #XX -- [ Pg.323 ]




SEARCH



Experiment 29 Quantitative Flame Atomic Absorption Analysis of a Prepared Sample

Samples quantitative analysis

© 2024 chempedia.info